Acta Microscépica Vol. 10 N° 1, 23-27, 2001

Article ISSN 0798-4545 / Depésito legal pp. 199202ZU873

Electron Diffraction Symmetries in Reflections in
Higher-order Laue Zones

Simetrias de Difraccion Electronica en Reflecciones de Zonas Superiores de
Laue

Alwyn Eades

Department of Materials Science and Engineering, Lehigh University. Bethlehem, PA 18015-3195, USA.
TEL. 610 758 4231, FAX. 610 758 4244. E-mail: jae5 @lehigh.edu

Abstract: The standard symmetry tables for convergent-beam diffraction are for the case of reflections in
the zero-order Laue zone. However, the symmetries of reflections in the higher-order Laue zones are in
general different from the symmetries of the reflections in the zero-order Laue zone. Four symmetry op-
erations produce symmetry relations for reflections in the zero-order Laue zone only, the corresponding
symmetry operations are missing in reflections in higher-order Laue zones. Twenty-one of the 31 diffrac-
tion groups have one or more of these four operations (alone or in combination with other symmetry op-
erations). The four operations are those operations which exchange “up” and “down”; they are an inver-
sion center, a horizontal mirror, a horizontal two-fold axis and a four-fold inversion axis. Despite the dif-
ference between the symmetries of zero-layer and higher-order-Laue-zone reflections, the pattern symme-
tries of on-axis convergent beam patterns are unmodified.

Key words: Convergent-beam diffraction, diffraction groups, symmetry, Higher-order Laue Zones
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Resumen: Las tablas de simetria standard para difraccién convergente del rayo se utilizan para el caso de
reflecciones en el orden-cero de la zona de Laue. Sin embargo, las simetrias de reflecciones en las zonas de
Laue de alto orden son en general diferentes de las simetrias de las reflexiones en el orden-cero de la zona
de Laue. Cuatro operaciones de simetria producen relaciones de simetria para las reflexiones en el orden-
cero de Laue inicamente, las operaciones de simetria correspondientes estdn ausentes en las reflexiones en
el orden superior de las zonas de Laue. Veintiuno de los 31 grupos de la difraccién tienen uno o mis de es-
1as cuatro operaciones (s6lo o en la combinacién con otros funcionamientos de simetria). Las cuatro opera-
ciones son aquellas que intercambian “arriba” y “abajo”; ellas estdn en un centro de inversion, un espejo
horizontal y un eje horizontal de dos pliegues y un eje de inversion de cuatro pliegues. A pesar de la dife-
rencia entre las simetrias de capa-cero y reflexiones de orden superior de la zona de Laue, los patrones de si-
metrias de rayos convergentes no estin modificados.

Palabras clave: Difraccion convergente, difraccién de grupos, simetria, zonas de Laue de alto orden, pa-
trones de zonas ejes.
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INTRODUCTION

Convergent-beam diffraction patterns taken at (or near) a
zone axis have symmetries which are related to the crys-
tal symmetry of the sample. Thus, the symmetry of
convergent-beam patterns is used to characterize the
symmetry of the sample. This is done using tables which
relate the diffraction symmetry to the crystal symmetry.
These tables were first given by Buxton et al (1). The ta-
bles give the symmetry within each reflection and the
symmetry between the reflections, in the diffraction pat-
tern are quite general, except that without explicitly say-
ing so, the results are given for the reflections in the
zero-order Laue zone (referred to for convenience and
brevity as the zero layer).

Tanaka et al. (2), pointed out that the symmetries in
and between the reflections in higher-order Laue zones
(HOLZ) are different from those in the zero layer. The
paper of Buxton et al. (1), is incomplete in this sense. The
present paper completes the work of Tanaka et al. (2),
who did not describe all such examples in a systematic
way.

The principle used to derive the symmetry in a
convergent-beam pattern is this: two “experiments” are
found, involving two different directions of the incident
beam, such that the two experiments are related by a
symmetry operation, and with the use of the reciprocity
principle (3), if needed. Then the intensities of those two
orientations in a convergent beam pattern will be the
same and the pattern develops a corresponding symme-

try.

An example: a horizontal mirror

Consider the case of a sample in which the crystal
structure contains a mirror plane which is horizontal (i.e.
parallel to the foil and normal to the beam). We can
choose two directions of the incident beam and show that
they must give rise to two equal intensities in the diffrac-
tion pattern because they are related by the mirror opera-
tion. In a dark field disc, these directions are on opposite
sides of the center of the pattern. Therefore, each dark
field disc has a two fold axis as a result of the presence of
the mirror plane.

Fig. la shows an incident beam and a diffracted
beam. The dashed line indicates the orientation of the in-
cident beam that would be at the exact Bragg angle for
this reflection. Fig. 1b shows a different orientation of
the incident beam and the corresponding diffracted
beam. These two diagrams are the same, if one of them is
reflected about a horizontal line through the sample. Ac-
tually, they are not the same but they would be the same
if the arrows were reversed. Since the reciprocity theo-
rem (3) tells us that we are allowed to reverse the direc-
tion of the arrows, we can take off the arrow heads (Fig. 2)
and the two diagrams are indeed the same if one pattern
is reflected about a horizontal line. Therefore, the two di-

Figure 1. Schematic diagram showing the incident beam and
one diffracted beam in two different orientations close to but
not at the Bragg angle for the reflection. The dashed line repre-
sents the orientation of corresponding to the Bragg angle.

Figure 2. Schematic diagram as for Figure | except that the ar-
rowheads have been removed. The reciprocity theorem states
that the rays can be reversed, so the arrowheads are not rele-
vant. Now it can be seen that the two diagrams are related by a
reflection across a horizontal line through the sample.

rections in the diffracted beam represented by the two
outgoing rays in Figs. 1a and 1b must have the same in-
tensity. These two rays are at equal angles from the posi-
tion of the exact Bragg angle and the same relation will
exist between all pairs of rays that are at opposite posi-
tions with respect to the Bragg point. The diffracted
beam must contain a two-fold symmetry axis. Indeed all
diffracted discs for a sample with a horizontal mirror
must have two-fold symmetry.

A point which may need clarification arises from the
fact that Figs. 1 and 2 are two-dimensional and represent
a section through a situation which is essentially three-
dimensional. In two dimensions, a two-fold axis and a
mirror are the same. To establish that in the case of the
horizontal mirror it is a two-fold axis and not a mirror, it
is necessary to consider what happens if the ingoing ray
in figure 1la, for example, is not in the plane of the paper
but slightly above it. This will reveal that the result is in-
deed a two-fold rotation. In the work of Buxton et al. (1),
the diagrams were drawn using the stereographic projec-
tion to make the understanding of this three-
dimensional aspect of the analysis easier.

The analysis given above, is carried out on the as-
sumption that the two diffracted directions are direc-



Figure 3. In this diagram the direct (or transmitted) beam is
added to the figure so that the diffraction vector g can be
shown. Since the vector is the same in the two diagrams, the dif-
fracted beams of Figures 2a and 2b correspond to different
points for the same reflection.

tions within the same diffracted beam. This is the case
only if the diffracted beam is in the zero-order Laue zone.
Fig. 3 shows the direct beam as well as the incident and
diffracted beams. From this, we can see that the g vector
is the same for the two cases and that it is parallel to the
sample (and therefore to the mirror plane).

If instead we look at a reflection which is in the first-
order Laue zone, the g vector is not parallel to the mirror,
Fig. 4. This is similar to Figs. 1 to 3 except that the
dashed line representing the exact Bragg condition for
the diffracted beam is not symmetric with respect to the
mirror. Now, it is clear that the two directions in the dif-
fracted beam (represented in Figs. 4a and 4b) are not re-
lated by a mirror operation. If instead we look to see
which directions are mirror related (Fig. 5), we see that
the two directions that give the same diffracted intensity
are in different reflections. One is in the first-order Laue
zone while the other is in the Laue zone of order minus
one. This implies that there is a symmetry between re-
flections in Laue zones of opposite sign. In normal con-
vergent beam diffraction, of course, Laue zones with
negative order are not seen. In the conical scan method of
Tanaka et al. (1), they are seen and the fact that the pat-
terns are related to the Laue zones of positive order is put
to good use there.

The general result

We can generalize the above result and see that any
diffraction symmetry produced by a symmetry operation
that exchanges the top and bottom of the sample will ap-
ply to reflections in the zero layer only. We note that
many of the symmetries in diffracted beams are produced
by symmetry operations which do not exchange the top
and bottom of the sample. These include rotations that
have the rotation axis perpendicular to the sample and
mirrors that are perpendicular to the sample. Crystal
symmetries of this kind produce symmetries in the dif-
fracted beams that affect the zero-layer and higher-order
reflections equally.
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Figure 4. When the diffraction vector is in a higher-order Laue
zone, the dashed line (corresponding to the Bragg condition) is
not symmetric about the sample, the g vector is not parallel to
the sample, and the two situations represented by Figures a and
b are not related by a mirror operation.

Figure 5. The two orientations represented by Figures a and b
are now chosen to be related by the mirror operation, but the
completion of the diagrams in Figures ¢ and d shows that the
two conditions do not correspond to reflections in the same
Laue zone.



26 Alwyn Eades

The symmetry operations that exchange top and bot-
tom surfaces of the sample are these:
* an inversion center (1)
* a horizontal mirror (m)
* a horizontal two-fold axis (2-to indicate that the
diad is horizontal, not perpendicular to the surface,
itis written 12) B
+ a four-fold inversion (an inversion tetrad) (4)

When these symmetry operations are the only sym-
metries at the zone axis, the experiment will have the
symmetry of the corresponding diffraction group (Ta-
ble 1).

As shown, the horizontal mirror produces a symme-
try within each diffracted beam. The other three opera-
tions in the list produce a symmetry between different re-
flections - but reflections in the same Laue zone.

The symmetry operation 4, which was not included
in the discussion of Tanaka et al. (2), 1s unlike the other
three operations in which “up” is exchanged for “down”,
in that it also includes a non-inverting operation, namely
a normal two-fold axis. The two-fold axis included
within (and therefore within the diffraction group 4;) is
preserved in both zero-layer and higher-order reflec-
tions, just as a two-fold axis alone would be.

The symmetries described in Buxton et al. (1) as oc-
curring in the case of these diffraction groups will not oc-
cur in the reflections in the higher-order Laue zone re-
flections, with the exception of the two-fold symmetry in
the case of 4/4,. The symmetries of the HOLZ reflec-
tions will also be reduced in all of those diffraction
groups which combine one of these four operations with
other symmetry operations. The complete list of the sym-
metries for HOLZ reflections is given in Table 2 for all
the diffraction groups.

Symmetries in On-axis Convergent-Beam

Patterns

Practical analysis of symmetry is often done using
on-axis convergent-beam patterns. Such patterns do not
display the full symmerry of the diffraction group. This
is because (as indicated above for the case of the horizon-
tal mirror) the diffracuon group includes symmetries

Table 1. The table lists the four symmetry operations of
the sample that exchange up and down and hence give
symmetries which are absent for reflections that are not
in the zero laver. For each symmetry operauon the corre-
sponding diffraction group is given

Symmelry operation Diffraction group

1 2u
m 1y
12 my
4 4y

Table 2. The table lists the 31 diffraction groups. For
each diffraction group, the table gives (in the second col-
umn) any symmetry elements which arise from the in-
verting symmetries of the sample. In some cases, there is
more than one and all of them are listed. However, in
each case it is enough to give one of them since any one of
them, added to the non-inverting symmetries, will gen-
erate the others. The third column gives the symmetry
group for the reflections that are not in the zero layer.
The ten diffraction groups that do not include an invert-
ing symmetry operation are the ten plane groups

Diffraction Inversion Symmetry group for
) Group Operations HOLZ reflections
1 N
1% 1y 1
2 2
2 Zy 1
21, Ig(24) 2
my my 1
m g
mly Tg (my) m
2mymy my 2
2mm
2, mm, 2, (my) m
2mml, lp (2p myg) 2mm
4 -
4y 4y 2
41, 1 (4 24} )
4m,my my 4
4mm -
4,mmy, 4, (my) 2mm
4mml, Tp (4 2pmy) 4mm
3 =
31, La 3
3m, my 3
3m
3ml, 1y (mg) 3m
6
by 2y 3
61y 1 (2) [
6mymy m 6
6mm 5
6pmmy, 2, (myy) 3m
6mml, Ly 6mum




that relate orientations on both sides of the Bragg point.
However, a standard on-axis convergent-beam pattern
includes regions of the zero-layer diffracted beams that
are on one side of the Bragg point only. A zero-layer disc
includes a region which lies wholly “outside” the line
along which the reflection would be at the Bragg angle.
The orientations of the diffracted beam that lie “inside”
the Bragg angle are not observed. The direct beam in-
cludes the zone axis (at the center of the disc) so that its
internal symmetries may be revealed but the orientations
at which the diffracted beams are at the exact Bragg angle
are not in the discs.

In using the symmetry of convergent-beam patterns
to characterize crystal symmetry therefore, the full sym-
metry of the diffraction group is generally not found.
Only those symmetries which can be seen in the on-axis
pattern are used. These are the symmetries called the
“whole pattern” symmetry and the “bright field” symme-
try; there are two possibilities for each them, the full or
three-dimensional symmetry and the “projection sym-
metry”, the symmetry which is given if the effects of
HOLZ diffraction are invisible or ignored (1, 4). These
four symmetries represent the maximum information
which may be obtained from an on-axis pattern.

The four inverting symmetries are those symmetries
which relate orientations of the beam outside of the
Bragg point to orientations inside the Bragg point (this
can be seen from Table 1 of Buxton et al. (1). This is pre-
cisely the information that is lost in the on-axis pattern.
In short, the symmetries of the on-axis pattern are just
the symmetries predicted in the tables of Buxton et al. (1)
- even when the modified symmetries of the HOLZ re-
flections are taken into account.

We can elaborate this point a bit further. As stated
above, a disc in the zero layer covers a range of angles that
lie outside the Bragg angle. In contrast, discs correspond-
ing to reflections in higher-order Laue zones include the
Bragg angle for the reflection. Therefore such reflections
should display the full symmetry of the diffraction group
for the reflection. However the symmetries that relate
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orientations outside the Bragg angle to orientations in-
side the Bragg angle are just those symmetries that arise
from inverting symmetry operations, those of Table 1,
and therefore they do not give rise to symmetries in
HOLZ reflections. Thus, in an on-axis pattern, the sym-
metries observed are the same in all reflections whether in
the zero layer or HOLZ.

CONCLUSIONS

The tables of Buxton et al. (1), give inter alia the symme-
tries, about the Bragg point, that are to be expected for
diffracted beams in zone-axis diffraction patterns. The
results, as given, apply to the zero layer reflections - not
to reflections in higher-order Laue zones. Table 1 here
list the symmetry operations that give rise to symmetries
in and between the zero layer reflections but which do
not introduce symmetries in the higher-order reflec-
tions. (Symmetries are introduced between reflections in
Laue zones of positive and negative order, but these
would not be observed in normal microscopy.) Table 2
shows how this affects all the 31 diffraction groups. Be-
cause of the geometry of on-axis convergent-beam pat-
terns, the symmetries of on-axis patterns are not affected.
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