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ABSTRACT
Fluorescence microscopy does constitute an essential tool in cellular and molecular biology research as well as in materials
science. This technique permits to study both living cells dynamics in a noninvasive way or fixed cells, providing large
amount of quantitative information. However, the technique is significantly affected by the photobleaching of fluorescent
substances. This phenomenon is a photochemical transformation that occurs in different extent, in fluoresce molecules, and
diminishing its ability to produce fluorescence, and thus reducing the signal to noise ratio in final images. In order to
establish a model that allows explaining the phenomenon and providing information for the quantitative analysis of images,
we analyzed four commonly models used in microscopy of exponential fluorescence decay. These were compared
objectively using analysis of variance, being the function of four-parameter bi-exponential without constant term the model
that best fit the data.

Keywords: Fluorescence microscopy, photobleaching, nonlinear regression, F-test.

SELECCIÓN DE UN MODELO DE FOTODECAIMIENTO UTILIZANDO ANÁLISIS DE REGRESIÓN NO
LINEAL PARA APLICACIONES EN IMÁGENES DE MICROSCOPIA DE FLUORESCENCIA

CUANTITATIVA

RESUMEN
La microscopía de fluorescencia es una herramienta fundamental en las investigaciones de biología molecular y celular así
como también en ciencias de los materiales. Permite estudiar tanto la dinámica de células vivas de una manera
prácticamente no invasiva, como las células fijadas. Sin embargo, la técnica se ve afectada por el fotodecaimiento de las
sustancias fluorescentes. Este fenómeno consiste en una transformación fotoquímica que se produce en la moléculas que
producen fluorescencia, disminuyendo su capacidad de producir fluorescencia y por lo tanto, reduciendo la relación señal
ruido en la imágenes finales. Para establecer un modelo explicativo del fenómeno y proveer de información para el análisis
cuantitativo de imágenes, se analizaron cuatro modelos de decaimiento exponencial de la fluorescencia comúnmente
utilizados en microscopia. Estos se compararon de forma objetiva utilizando una prueba F sobre los residuos del ajuste de
los modelos, obteniéndose que la función bi-exponencial de cuatro parámetros sin término constante resultó el modelo que
mejor representa los datos.

Palabras claves: Microscopia de fluorescencia, fotodecaimiento, regresión no lineal, prueba F.

INTRODUCTION

Fluorescence microscopy is based on the fluorescence

property of some substances to absorb photons of a

specific wavelength and emitting to longer ones. The

difference between these two wavelengths is called the
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Stokes shift and is a particular property of fluorescence

that makes it an extremely useful phenomenon [1, 2] since

it does allow to optically separate the excitation from

emission light. The substances that naturally produce

fluorescence are called fluorophores, molecules generally

composed of aromatic rings and in which, the outermost

electrons determine their efficiency as a fluorescent

compounds, and their wavelengths of absorption and

emission. These substances are used in specific

localization of cellular structures, which is achieved

through various techniques such as biochemical,

molecular, genetic and nano-technological. For example,

it is possible to label almost any protein of a cell through

an immune response, where the antigen is the protein to

be targeted, and the antibody is the protein bearing the

fluorophore. This technique is widely used and is known

as immunofluorescence (IF). Another way to localize cell

structures in a highly specific way is using fluorescent

proteins such as Green Fluorescent Proteins (GFP) which

can be inserted into gene constructs by genetic

engineering that encode the target proteins, but these are

neither structurally or functionally modified.

Although fluorescence microscopy permits to obtain very

clear and highly-contrasted images, it is a microscopy

mode that has degradation sources that normally are not

present in other optical microscopies. This makes that the

requirements for fluorescence measurement on images,

through detected intensities, need an accurate instrument

calibration, as well as precise control and reduced

aberrations of the optical system. One of the more

important image degradation sources in fluorescence

microscopy is the photobleaching. This phenomenon

consists in a fluorophore's photochemical transformation,

which diminishes its ability to produce fluorescence,

reducing the signal-noise ratio on the final images. This is

a multifactorial process, among them we can mention the

presence of oxygen into the sample, the intensity level of

the incident radiation and the chemical composition of the

environment in which the fluorophore is immersed [2, 4].

Therefore, fluorescence degradation level due to

photobleaching is a key factor to take into account when

quantitative fluorescence microscopy is required. It should

also take into consideration in deconvolution process,

because the vast majority of deconvolution algorithms are

built from image formation models that only consider

different noise models and background levels. In this case,

photobleaching would be violating the linearity

assumption of the model.

In this work we have applied a methodology to select

from four photobleaching models used in fluorescence

microscopy, the best describes the data. These models are

represented by equations from (1) to (4).

(1)
The model given by equation (1) is the simplest form of

photobleaching after linear regression, where θ1 is

proportional to the initial concentration of fluorophores, θ2

is the decay-rate constant of the fluorescence and i is the

intensity detected by the sensor.

(2)
The model represented by equation (2) is similar to the

that of equation (1), but it adds a parameter θ3 that models

the mean level of the background fluorescence [5, 6].

(3)
Equation (3) represents a model that considering two

fluorophore populations with initial concentrations θ1 and

θ3, and their decay-rate constants θ2 and θ4 [4].

(4)
Finally, equation (4) is a model that adds to equation (3)

the parameter θ5, which represents the mean level of the

background fluorescence.

Models described by equations (1) to (4) are nested. That

is, simpler models are versions of the general models with

at least a parameter equal to zero. Therefore, model
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represented by equation (3) is nested in to the model of

the equation (4), where the parameter θ5=0. In the same

way, models described by equations (2) and (1) are also

nested in model of the equation (4) with θ5=0 and, θ4=0

and θ3=0, respectively; and so on. This relationship

between models will be very useful as we will show later.

We first define the general form of the mean function for

the nonlinear regression:

(5)
where E is the expected-value operator, I is the set of all

measurements ij given the data predictors tj, with j=1...N,

and being m the kernel mean function dependent of the

unknown parameter vector θ.

As with linear models, we define the variance function

which is given by:

(6)
where ωj are known positive weights and σ2 is an

unknown positive number. Equations (5) and (6) together

with the assumption that observations are independent of

each other define the nonlinear regression model [7, 8].

Taken this assumptions, we can use the least square

technique to estimate the unknown parameters,

minimizing over all permitted values of θ the residual sum

of squares function.

(7)

By performing a comparison between linear and nonlinear

regression, when minimizing RSS with respect to θ, the

derivatives in linear regression is only data's dependent. In

the nonlinear case, deriving RSS respect to θ, at least one

of the derivatives is function of at least one parameter. In

(multiple) linear regression an objective way to select one

model, from a set, that represents the data, is by checking

if an additional term append to the model will reduce

significantly the residuals. This is an objective way to

apply the principle of the Ockham's razor, where the

purpose is to chose, from a set of models that equally

describe the data, the simplest one. Then, as in multiple

linear regressions, in nonlinear regression if the models

are nested an F-test can be applied by building the

following statistic:

(8)

where θG is the vector of estimated parameters of a more

general model, θN is the vector of the estimated parameters

of a simpler model which is nested in the general model.

dfG and dfN are the degree of freedom of the general and

nested model, respectively. Following, using the statistic

given by equation (8), is possible to quantify the change in

the sum of the square residuals of the models, using the p-

value obtained from a F distribution with (dfN-dfG, dfN)

degree of freedom [7, 9].

In our study, the kernel mean function m, (5), can be any

of the equations from (1) to (4), and the unknown

parameter vector θ is formed by (θ1, θ2), (θ1, θ2, θ3), (θ1,

θ2, θ3, θ4) and (θ1, θ2, θ3, θ4, θ5), respectively. The matrix

of predictors t is formed by only one sample vector of

exposition times to ultraviolet (UV) light; and each

element tj of t has a pair ij which is the intensity imaged on

a pixel.

In this manner, the set of time-sequential images captured

is a sample of the fluorescence photobleaching of a

portion of the an immuno-tagged specimen continuously

exposed to UV-light.

MATERIALS AND METHODS

The specimen selected to this work was Rhinella

arenarum tadpoles, which were obtained by in vitro

fertilization. Adult males and females were kept in water

at 20 °C for 24 hs, after which females were injected with

2500 IU of human chorionic gonadotropin (hCG)

hormone (Endocorion, Elea, Buenos Aires). Twelve hours
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later, eggs were harvested and fertilized with testis

extracts as described by Rengel et al. [10].

Developmental stages were determined according to

Gosner (1960) [11]. Stage 20 Rinhella arenarum tadpoles

were fixed in Carnoy solution (ethanol:chloroform:acetic

acid, 6:3:1), washed in PBS (Phosphate Buffered Saline),

progressively dehydrated in ethanolic solutions of

increasing concentrations (Cicarelli, Buenos Aires,

Argentina) and xylol cleared (Cicarelli). Specimens were

pre-included in xylol:paraffin 1:1, followed by six

changes of paraffin (Cicarelli) and were finally included

in pure paraffin. A Reichert Jung Hn 40 microtome was

employed to obtain 5 μm-thick transversal sections from

paraffin-embedded tissues, which were mounted on 1%

gelatin-coated slides and dried at room temperature.

The monoclonal antibody 5D3 is a mouse IgG1 (chicken,

frog) directed to the extracellular domain of the 120 kDa

isoform of the cell-cell adhesion molecule E-cadherin

(Transduction Laboratories, Lexington, Kentucky, USA).

The antibody was used in a 1:50 dilution. For the

detection of primary antibody binding, we used a

secondary antibody (FITC-conjugated goat anti- mouse

IgG; Sigma Chemical Company, St. Louis, USA) at a 1:64

dilution.

E-cadherin immunolocalization: sections were xylol-

deparaffinated, hydrated in a descending-concentration

alcohol series, methanol-treated with a 0,3 % solution of

hydrogen peroxide to block endogenous peroxidase for 20

minutes at room temperature, washed in PBS, treated with

Triton X-100 (Sigma) 1 % for 15 minutes at room

temperature and incubated in mouse normal serum 1:20

for 40 minutes at room temperature. Then, slices were

incubated at 4 °C overnight in humid chamber with

primary monoclonal antibody. Next, tissues were washed

in PBS, incubated with the secondary antibody for 2 hs. at

room temperature in the dark and rinsed in PBS.

Digital images were captured, through an objective lens

20x and 0.7NA, with a monochromatic Apogee Charge-

Coupled Device (CCD) camera, 14 bits of color

resolution, 768x512 sensor size, and 9x9 μm2 pixel size,

mounted on an Olympus BX50 optical microscope

equipped with a mercury UV-lamp.

The CCD camera was controlled by a personal computer

with an Intel Pentium II 350 MHz processor, 256 MB of

RAM and 6 GB of hard-disc space, with a software

developed in our laboratory [12]. Images were

automatically obtained using this software after the setup

of some basic parameters, which included, image

dimensions (512x512 pixel2), number of images (80),

exposure time of the CCD (1 second) and time delay

between one image and the next (20 seconds).

Preprocessing and data extraction was carried out in the

calculus free software Octave 3.6. It consisted on BIAS

IMAGE subtraction TO all images of the sequence and

the classification by intensity thresholding of those pixels

with intensities corresponding to fluorescence signal in

the first image. The pair of values of each pixel and the

interval of exposition time to UV-light were then save on

text files for statistical data analysis in the statistical free

software R 2.14.

The parameters of the models given by equations (1) to

(4) were obtained optimizing each model by least square

method. This was carried out by using a nonlinear

regression tool of R 2.14 [9], which implements, among

other, the nl2sol algorithm for numerical optimization

[13]. This implementation of the algorithm allows to setup

lower and upper bounds for the parameter estimators,

which is useful to constrain the solutions in the

optimization process to values that have a physical

meaning. Therefore, all those parameter estimators that

multiply the exponential functions were selected to be

positive because they represent concentrations, and those
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parameter estimators that are exponent of the exponential

functions were selected to be negative because they

represent decay-rate constants.

Additionally, a set of initial guesses of the parameter

estimators had to be passed to the algorithm. These initial

guess were obtainded from data in order to automate the

process. For models given by equations (1) and (2), the

initial guess of the parameter θ1 was setup to be the

intensity value of the sequential data set at time zero. θ2

was obtained as the first numerical difference between the

two first intensity values. θ3 is the background mean-level

measured in a portion of the image without fluorescent

signal. In models represented by equations (3) and (4),

the initial values θ1 and θ3, were considered to be 50% of

the first value of the sequence data set. θ2 and θ4 were

obtained with numerical differences, between the first and

second values and between the two last values of the

sequence data set, respectively. Finally, θ5 was measured

from a region without fluorescent signal.

RESULTS AND DISCUSSION

Fig. 1. Schematic representation of four pseudo colored
images of the temporal sequence (256x256, 20x).

Fig. 1 is a schematic picture gallery of the temporal

sequence obtained. The white dashed lines are spatially

coincident and enclose the regions of interest (ROI) used

to resume results in this report. Images were colored with

a fire pseudo color lookup table in order to highlight

differences on intensities that are not easily recognized by

visual inspection on gray scale images.

Fig. 2 shows the ROIs indicated on Fig. 1 of five selected

images of the full temporal sequence. The spatially

coincident sub ROIs in white dashed line is a

representation of the kernel size used for averaging

neighbor pixels.

The set of averages obtained by processing each

coincident sub ROI along the full temporal sequence were

fitted to equations (1) to (4) as described en M&M

section. Fig. 3 shows the fitted curves (red) to data (black)

for each model. Equation (1) is a model that has been used

in several works [14-18], and even when a graphical

analysis evidences the poor fit (clearly, residuals has not

normal distribution), the results obtained have been

sufficient and satisfactory for the applications.

Fig. 2. Five pseudo colored images selected from the
sequence of 80 (32x32, 20x).

Except for intensity decay given by equation (1), it is

evident that is not possible to objectively establish which

model is adequate only using the graphic representations,

since superficially all of them fitted well. Analyzing the

sum of square residuals (see table 1) can be seen that

models given by equations 3 and 4 are which exhibit less

residual sum. Even when these results give us some
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information about which models can be the best to

describe the data, they do not allow to objectively decide

for any of them.

Fig. 3. Fitting graphs of models given by equations (1),
(2), (3) and (4).

Table 1. Sum of standard residuals of the models

Model RSS(θ)/df

Equation (1) 3.67

Equation (2) 1.08

Equation (3) 0.77

Equation (4) 0.77

For this reason, to objectively establish which model is the

better one to represent the data, it was estimated the

statistic F for each model combination, starting from more

general models toward the simpler. Table 2 do resume the

F-test results, corresponding to the comparison of the

models given by equations (3) and (4) and following, by

equations (3) and (2). We also carried out the

comparisons of the all other model combinations, but as

was expected, due to the nesting, model given by equation

(3) significantly diminished the residual sum respect to the

simpler models.

Table 2. p-values of the F-test applied to model
comparisons

Model comparison p-value

Eq. (3) vs. Eq (4) 0.6999

Eq. (2) vs. Eq (3) 3.268e-13

As can be observed at Table 2, model given by equation

(4) did not introduce any significant change respect of

equation (3), that mean that θ5 = 0, from which the

complexity can be reduced to four parameters. The fitting

of equation (3) showed significant differences compared

to the fitting of equation (2) and so θ4 ≠ 0. For this reason

it can be deduced that this is the best model, of the set

proposed, to describe the data.

Additionally, the estimator distributions were analyzed

applying the bootstrap approach to the residuals obtained

in each fitting [19]. Fig. 4 shows the distribution of the

parameter estimator for model given by equation (3). In

this figure the unimodal and approximately Gaussian

shape of the parameter estimators can be observed and

also their relationship in dispersion plots with the curves

of the confidence intervals at 95%.

Fig. 4. Photobleaching correction applied to two images
of the sequence. (A) Original images, (B) corrected

images.

The parameter's estimator for the models given by

equations (1), (2) and (4) were not adequately distributed.
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Finally, a Shapiro-Wilk test of normality was applied to

the residuals of all the models, being the model of

equation (1) the only that showed significant differences

from the normality condition.

Finally, Fig. 5 shows a correction applied using equation

(3) to selected ROIs of the sequence. This recovery

processing is illustrative and requires a deep evaluation

and comparison with the other models.

CONCLUSIONS

The present report shows an objective way to choice,

between several nonlinear models, the best that describe

the data of the intensity decay due to photobleaching in

fluorescence microscopy temporal series. This selection

criterion is based on a F-test and requires that the non

linear models are nested. In this work we have proposed

four models finding that the bi-exponential without

constant term, exhibit the best fitting to the data in the

sense of the least square.

It is important to highlight that the mono-exponential

model is still the most used [14-18], but this model do not

fit adequately the data and this fact should be take into

account when the recovery techniques will be used for

signal or data normalization.

Future efforts will be directed to apply a photobleaching

analysis to three dimensional fluorescence microscopy

images obtained by optical sectioning [20], were the

photobleaching is dependent of the specimen thickness

and the spatial distribution of the excitation light.

As final conclusion, it should be clarified that the bi-

exponential model without constant term, does not explain

the photobleaching phenomena in a general form, due to

this depend on several factors and requires a deep

biophysical study of the tissue and its interaction with

UV-light.
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