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Abstract

Despite the great demand for blood smear analysis
in Brazil and worldwide, relatively few efforts have
been directed to the automation of this important
problem. This paper presents a prototype of a semi-
automatic leukemia diagnosis program,
emphasizing basic steps in pattern recognition as
segmentation, filtering and feature extraction. A
supervised learning process segments blood smear
images into four regions of interest: nucleus,
cytoplasm, erythrocytes and plasma according to
their color. Then, the measurements are performed,
both general such as perimeter, area, factor form,
circularity as well as innovative measures as
curvature, skeletons and multiscale fractal
dimension, which can provide more objective
subsidy for diagnosis.

Keywords: Pattern recognition; leukocyte
morphology: quantitative microscopy, Bayesian
segmentation, multiscale analysis.

Materials and Methods

General structure of the system

We analyzed peripheral blood Leishman stained (Sigma
Co.) smears of normal individuals as presented in Table 1.
This image collection has different number of leukocytes
from each class in virtue of the different concentrations of
each cell in the blood. A cytologist captured the images
with a Zeiss microscope under 1,000x magnification
(lum=15pixels) and identified the micrographs
morphologically, keeping them in a database.

Tablel. Number of leukocyte images considered in this article

eosinophil neutrophil basophil lymphocyte monocyte

10 20 5 20 20

Introduction

Routine diagnosis and classification of hemopoietic
elements depends heavily on morphological descriptions
of the cells using the optical microscope [1], an exhaustive
and repetitive work performed by expert operators.
Although this process can be optimized, the available
automatic systems do not provide sufficient performance
for accurate diagnosis of malignances yet, once most of
them are designed to screen for normal cells. This paper
describes software for blood smear image analysis, where
blood images are split into regions of interest (ROI) by
Bayesian color segmentation and analyzed by traditional
and innovative features such as the curvature [5,12],
skeletons [8] and fractal dimension [7] of the nucleus. The
preliminary results allowed characterization of healthy
leukocytes, emphasizing the potentiality of the measures
for automated diagnosis of abnormalities.
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Figure 1. Stages in the analysis of a blood smear image

The standard stages in the automated process [17] are
illustrated in Figure 1. where the user selects sample areas
of a color image (1,000 pixels), labeling them according to
the region of interest (ROI) to which they belong



(computer training). The training data feed the Bayesian
supervised learning algorithm [11] to classify the ROIs
(segmentation) based on Gaussian probability distribution
functions of the color (RGB) pixels, estimated using the
training data.

Figure 2. Original image (left): a neulmpr:h_il and a lymphocyte
and its decomposition in ROI (right), after Bayesian color
segmentation and morphological filtering.

By filtering the ROI, we divide the image into
nucleus, cytoplasm, erythrocyte and plasma (Figure 2). It
is necessary to split each ROIs into connected components
with pixel area greater than 1,000 (an object) because
minor pixel areas generally represent noise of the
segmentation or isolated granules of granulocytes,

Measurements

Once we have separated the objects, several features are
extracted from them, including traditional measures such
as perimeter, area, nucleus/cytoplasm ratio, circularity,
texture, factor form [9], the color of the cytoplasm (Figure
3) and less conventional measures such as curvature,
skeletons and fractal dimension. We concentrated on the
nucleus measurements, since this is the region where
abnormalities often indicate malignance [4,16] and it is
less susceptible to be overlapped by other cells than the
cytoplasm, which is the most external region of the cell.

Figure 3. Color space (HSV) of neutrophil (black) and
eosinophil (gray) cytoplasm: advantageous separability of the
leukocytes in terms of HS axis.

Frequently, the nucleus contour of the eosinophil and
neutrophil are similar, mainly in the presence of

overlapped segments that compose their nuclei. Therefore,
an alternative analysis to cytoplasm description was to use
its color instead of its contour. Although RGB
representation does not allow good separation of the
different leukocytes, we verified that they could be
differentiated based on the HSV color space, by
considering the projection on HS plane as presented in
Figure 3. This graph was obtained considering 1,000
pixels from each different image of a set of 6 eosinophil
and 6 neutrophil. Such a graph was divided into regions
corresponding to the several classes and used as template
for identification of eosinophils and neutrophils in other
20 images, allowing 100% correct classifications.

A measure invariant to rotations, translation and
reflections of the curve is the curvature. We use signed
curvature, where the sign provides indication about the
concavity at each contour point. Corners are associated
with high absolute curvature values that exceed a
threshold. In this article, the contour was captured in anti-
clockwise sense, k>0 means concavity and k<0 means
convexity (Figure 4). The curvature (k) points over the
nucleus contour (x,y) convoluted with Gaussians g(o;1)
can be expressed as presented in equation (1):

x'(to)y'(t.o)—x"(1)y'(t,0)

kit,o)= (1)

(x" (t,o)+ y" (1,0)) é

where x(7,0) and y(1,0) can be calculated using equation
(2) and (3), respectively.

x(1,0) = x(t)* g(o) (2)
y(t,0)=y(1)*g(o) (3)

The hierarchical descriptor called multiscale
curvature [2,3,5,6] expresses the contour curvature in
terms of analyzing scales for detecting roughness, corners,
as well as curvature statistics such as mean, median,
variance, standard deviation, entropy. moments, etc. We
calculate curvature using the contour points as one-
dimensional complex signal, where the (x,y) coordinates
are expressed as complex numbers in the form (x+iv). The
derivatives of the signal, calculated for the curvature
estimation, uses Fourier descriptors and Gaussian
windowing for an interval of standard deviations
(multiscale analysis), generating the curvegram. Figure 5
(a). and (b) exemplifies the high curvature points along
the nucleus contour for a particular ¢ and a threshold
(T=0.1), which determines the minor value from which a
curvature point is considered “high™. The threshold
parameter must be as low as possible in order to eliminate
the noise inherent to spatial quantization effects. The
threshold ~ estimation occurred through successive
experiments and user visualization of the relevant
concavities of the addressed images.
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Figure 4. Curvature of the contour poins (x.y) of the neutrophil
nucleus (Figure 5); the curve is smoothed for gaussian with
0=22.5. Black dots indicates the high curvature peaks of the
contour.

An important descriptor originates from the collection
of curvatures in terms of the scales (curvegram) — the
bending energy [15]. expressing the amount of energy
needed to transform the specific shape under analysis into
its lowest energy state (a circle). The bending energy
curve represents the evolution of the energy along a o
interval, i.e.. a high curvature analysis of points in a
multiscale approach. To achieve scale independence, the
bending energy must be normalized by the perimeter (L)
since we intend a scale-invariant shape analysis. which
can be done by calculating the equation (4). Figure 5.c.
presents the normalized bending energy (B) of the n points
of the contour to an interval of @.

B=L/Y ko)’ )

Another adopted concept is the image skeleton
(Figure 6), which was calculated through a simple
algorithm for exact dilations that propagate labels
assigned to each contour point [6]. The multiresolution
skeletons are obtained from the propagated labels and its
higher values compose a skeleton [8]. The skeletonization
relates to the minimal structure of the image, informing
hierarchies, branches and angles among branches of this
image. It can also be used for describing roughness,
elongation of the object, high curvature points through
counting the branches, calculation of the skeleton length
and the number of extremities, respectively.

Fractal dimension can be used to express the
complexity of an object, presenting how much the object
samples the space around it, what we can characterize in
terms of the effective surface of contact between the
object and its surroundings. The fractal dimension
estimation relates the area of the object to its rate of
occurrence. The algorithm to calculate the multiscale
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fractal dimension curve |7] using distance transform [6]

involves the following steps:

I. dilate the contour through distance transform using

radii (d) between 0 to 200, keeping the area of the

dilated objects;

construct a histogram relating the area with its

respective radii (h(d));

3. calculate the logarithm of the areas in terms of the
logarithm of the radii (loglog);

4. derive the loglog function, obtaining the curve C;

5. calculate 2-C, the multiscale fractal dimension

(Figure 7).

It should be observed that the n points of the loglog
plot extremities should be disconsidered due to poor
sampling in the beginning of the curve and the
discontinuity at the end of the curve. The fractal
dimension peak indicates the ~maximum fractality
achieved by the object. The step 1 is optimized in our
program, once we keep the distance transform of the
image during the exact dilation calculus for the skeletons.

!‘-J

Results

Sabino et al [14] described preliminary measurements,
including the general features of this current research.

L = S0}
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Figure 5. (a) Lymphocyte and (b) neutrophil nucleus contour
with marked high curvature points for 6=22.5. (c) Bending

energy curve of the lymphocyte (thick line) and the neutrophil
(thin line) nucleus.



Original results of the application of methods as
curvegram, multiscale skeletons and multiscale fractal
dimensions to extract features are addressed.

Figure 5 (a) and (b) exhibit the contour of the nucleus
of a lymphocyte and a neutrophil, respectively, and their
high curvature points, assuming a specific threshold (high
curvature = k>0.1) and 0=22.5. The number of concavities
and convexities can be used to differentiate the
lymphocyte from the neutrophil, for example. Figure 5 (c)
shows the normalized bending energy, which allows
inferring whether the lymphocyte contour is less bent than
the neutrophil. The skeletons (Figure 6) of the two
leukocyte contours, introduced in Figure 5, were
calculated using the threshold 715, which determines the
skeleton ramification.
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Figure 6. Skeletons (continuous line) of the lymphocyte (left)
and neutrophil (right) nucleus contours (dashed line).

Also using the contours, the leukocytes listed in Table
1 were examined with multiscale fractal dimension curves
as in Figure 7. Figure 8 illustrates the distribution obtained
considering the fractal dimension for the nucleus and the
cytoplasm. Note that nucleus contour fractal dimension
allows better separation than the cytoplasm contour fractal
dimension. Figure 9 shows the nucleus fractal dimension
in connection with its normalized area, calculated as the
area divided by the maximum fractal dimension,
exemplifying the importance of the nucleus fractal
dimension measurement as a cluster criterion.
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Figure 7. Multiscale fractal dimension curve of leukocytes
contour (Figure 5): estimation of the maximal fractal dimension
(black star).
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Figure 8. Fractal dimension of the nucleus and the cytoplasm:
emergence of the division between polimorphonucleateds
(circle=cosinophil, star=neutrophil and x=basophil) and
mononucleateds (triangle=lymphocyte, square=monocyte) cells.
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Figure 9. Fractal dimension of the nucleus in terms of its
normalized area.

Although the nucleus fractal dimension allows
visualization of a division between polimorphonucleateds
and mononucleateds, the different types of leukocytes
present a high scatter within their classes, mainly among
polimorphonucleateds. The polimorphonucleated
leukocytes contain lysosome granules in cytoplasm, often
implying' overlapping between the granules and the
contour of nucleus and cytoplasm, the subject of our
analysis.

A valuable feature to solve this problem would be the
color of the cytoplasm, since specialists argue about the
validity of the eosinophil color as a characteristic of its
cytoplasm. Therefore, a cytoplasm color map was
elaborated for neutrophils and eosinophils (Figure 3) and
we verified that they could be differentiated using the hue-
saturation axis. These two types of leukocytes were
selected because their contours are often similar. The
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basophil identification remains unpredictable, once it
relies on a greater amount of image samples.

a
Figure 10. Hairy cell identified as a malignant lymphocyte. (a)
original image and (b) segmentation result for cytoplasm
identification.

An example of malignant cell identification is
illustrated for the hairy cell in Figure 10 (a), whose
cytoplasm is shown in Figure 10 (b). The identification
begins with the measurements of roundness of nucleus,
which is characterized by its circularity and low curvature
points along the contour. So the algorithm recognizes the
cell as a possible lymphocyte. An analysis of the
cytoplasm in terms of its fractal dimension will indicate it
is equal to 1.1714, which is higher than for a normal
lymphocyte (fractal dimension varying between 1.076 to
1.149) as shown in Figure 8.

Discussion

While research on leukocyte differentiation has been
concentrated on graylevel images and thresholding [9,16],
a method using color images has been considered here.
Features such as curvature, skeletons and multiscale
fractal dimension are promising for describing leukocytes.
The analysis of the multiscale fractal dimension as a
differentiation criterion was relevant to differentiate
mononucleated from polimorphonucleated leukocytes,
although segmentation improvements can lead to better
results. The extracted features were first treated by using
thresholding to classify the cells, though a clustering
method [11] seems necessary. While only the nucleus
curvature  was  analyzed, improvements in the
segmentation process will allow including the curvature of
the cytoplasm, which can help in blast cells identification,
particularly hairy cells and cytoplasm membrane fragility.
Some results [1,3,9] indicated that the contour and texture
represent valuable parameters in the automatic leukemia
diagnosis using cell morphology.

Conclusion

Nowadays blood cell morphology has been progressively
replaced by new and expensive technologies. However
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many hematologists can still diagnose some classes of
leukemia just Jooking at the cell morphology, the cheapest
way of analysis.

The current paper presented a collection of different
measures applied to images of white blood cell nucleus
and cytoplasm for evaluating its description in terms of
the extracted features. Some contributions related here
were the HS color space mapping of neutrophil and
eosinophil cytoplasm, multiscale analysis of leukocyte
contour considering curvature, skeletons and fractal
dimension as well as the normalized bending energy. The
described features showed encouraging results in the
leukocyte differentiation. reporting a possible procedure
for Hairy cell recognition, an abnormal and malignant
type of cell.

The training set for segmentation and Gaussian
probability distribution function of the RGB image pixels
determine the precision of the results, observing worse
classifications using the training set from different types
of leukocytes. More samples should be considered and
improvements to circumvent the problem of multimodal
data representation of the color points should include
estimation of probability density functions using Parzen
window [11].

The feature extraction supplies the measurements of
the cell, but few of them, usually, may be relevant
descriptors to differentiate cells. It is also possible to
verify that additional features, neither addressed nor
observable before, can represent important descriptors,
Selecting the features by using algorithms such as FSS, it
is possible to identify effective features. Therefore, feature
selection, which consists of choosing the features that are
most effective for class separability [13]. is an essential
endeavor to be considered in future developments,
including the chromatin texture investigation [16].
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