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Abstract

We propose in this paper an approach to
perform the deconvolution of three-dimensional
biological images obtained by fluorescence
microscopy based on the Projection onto Convex
Sets that is an important result from vector-space
projections theory. We suggest the use of three
sets of convex constraints where the first one is
to perform the three-dimensional deconvolution,
the second set is to perform super-resolution
(partially recovery of the missing cone of
frequencies) and the last one is to guarantee the
positiveness of the solution. Due to the presence
of Poisson noise in the images acquired by
fluorescence microscopes using CCD cameras,
we propose Goodman and Belsher's filter, which
considers this kind of noise, to be used in the
first set. In order to use the filter in a POCS
methodology, it is put in the form of a prototype
image constraint. We have tested the algorithm
using both synthetic and bead images and also
with real cells images. The method was
characterized by fast convergence rate and also
demonstrated a good performance in terms of
both visual results and cost-benefit analysis.

Keywords: 3D Deconvolution, COSM. POCS,
Convex Sets, 3D Image Restoration, Poisson Noise.

Introduction

This work presents an alternative iterative approach
to perform the deconvolution of three-dimensional (3D)
biological images [1] acquired by fluorescence
microscopy based on the projection onto convex sels
(POCS) theory [2]. Three-dimensional data are essential
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for the analysis of many structures of biological
specimens and play an important role in biomedical
research. For instance, the range of applications of 3D
microscopic images extends from 3D visualization of a
cell up to morphometry in neuroscience research.
Particularly, in  neuromorphology,  defining  the
relationship between structure and function of neurons is
important to further improve the understanding of the cells
[3].

Commonly, computational  optical  sectioning
microscopy (COSM) techniques are used to obtain a 3D
data volume of biological specimens [4] where the image
is formed by stacking a series of two-dimensional (2D)
images that are acquired by using fluorescence
microscopy [5][6]. We can find different forms of
fluorescence microscopy (light microscopy), including
confocal, deconvolution microscopy, where the images
are acquired with a conventional wide-field fluorescence
microscope, and two-photon microscopy. Both confocal
and wide-field microscopes produce images with poor
lateral and axial resolution although the confocal one
exhibits an improved axial resolution as compared with
wide-field microscope. For this reason, deconvolution
algorithms can also be applied to confocal images to
further improve the resolution, but for most practical
purposes these are already satisfactory. On the other hand,
the deconvolution microscope has some advantages over
the confocal microscope as, for instance, the capability to
work with wavelengths not provided by standard lasers.

In COSM a 3D image is a set of 2D images (optical
slices), which are acquired by moving the microscope
focus along the optical axis (axial direction). This
technique of optical slicing has the disadvantage that each
slice is obstructed (blurred) by out-of-focus information,
which affects each image from adjacent slices. The
mechanism of degradation (blurring) can be described by
modeling the microscope's optics and also the detection
process.

Mathematically, the observed 3D image b(x,v,z) in

the absence of any kind of noise is given by
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b(x, v,2)=h(x, y,2)* f(x,y,2) (1)
where f(x,v,z) is the specimen function, h(x, v,z) is
the point spread function (PSF) of the microscope and *
means 3D convolution. In the Fourier domain the problem
becomes

Blu,v.w)=H(u,v,w)- F(u,v,w) (2)
where B(u,v,w) is the Fourier Transform (FT) of
b(x,v,z). F(u,v,w) 1is the FT of f(x,v.z) and
H(u,v,w) is the FT of h(x,v,z2).

Due to the circular aperture of the microscope, the
transfer function (TF), which 1is the normalized
H(u,v,w), is zero-valued for most of the frequencies in

the Fourier domain [6]. In the region where the TF has
non-zero values it works as a low pass filter and in the
regions where it has zero values it removes the image
content in that region. Now, in COSM images, the
predominant noise is a signal-dependent one that can be
modeled by a Poisson distribution. The noise can be
incorporated into the model by considering the
observation b(x, y,z) as an inhomogeneous Poisson

process g(x,v,z). Of course, there are several other

sources of noise in COSM, including additive, and signal
independent, but in this work we are only concerned with
the Poisson one.

Then, the problem is to find an estimate of the true
specimen given the blurred and noisy observed image. It
is well known that this problem is ill posed and several
algorithms have been proposed to solve it [7 -10]. In order
to improve the resolution, the contrast, and also recover
the missing frequencies, we propose the use of the POCS
methodology. POCS is a powerful mathematical tool
proposed by Bregman [11] and Gubin et al. [12] and later
introduced in the signal and image processing literature by
Youla [13]. The POCS method has the advantage of
incorporating into the problem formulation a priori
knowledge in the form of convex constraints. Some
attempts were already made wusing POCS for
deconvolution of 3D microscopic images [14 - 16] but

these methods consider noise to be stationary, white

Gaussian and also do not address the problem of the
super-resolution (recover the missing frequencies). In
order to address these problems using the projection
theory we propose the use of three sets of a priori
information. The first set (S)) is to perform the
deconvolution of the blurred image with the PSF of the
microscope, the second set (S,) is based on the hypothesis
that the images have finite extent in all directions in order
to recover the missing cone of frequencies and the last set
(S2) is to ensure the positiveness of the solution. Using
these three sets the method demonstrates good
performance in terms of the restoration results and also of
the convergence rate.
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Materials and Methods

Projection onto Convex Sets is an important result
from vector-space projections theory [17-19]. Formally, it
looks for a solution satisfying some a prieri information
about the problem. Such information is incorporated into
the problem formulation in the form of convex sets
(convex constraints). Given a set S and any points x; and
x; that belong to §, then § is convex if
x=M-x+(1=u)-x, also belongs to § and 0<u<1.
For the sake of simpler notation, in the discussion below
we can consider only cubic images with size N x N x N
into a 3D Euclidean space and write Eq. (1) in vector-
matrix notation as

g=H-f (3)

3 .
where g and f are N x|Ivectors that are formed by

stacking the elements of g(x,v,z) and f(x,y, z)

respectively. Matrix H is the N7x N7 blurring matrix
that gives the blurring degradation effects where the
elements are samples A(x, y,z). We observe again that
g(x, y.z) is the version of b(x, y,z) degraded by Poisson
noise.

Now, let §;, S5 ..., Sy be M closed and convex sets

where S,  H. H is a Hilbert space and @ # § :ET‘RTM:; Sie
In our case H is the space L’ of square-integrable
functions, For each set S, we define a projection operator
P, such that for each function f [T H we have
-, o] <|r-e] @
over all g [1S;. Hence, P -f is the nearest element of f
in §; and if §; is elosed and convex Py -f is unique. For an
arbitrary starting point ' the recursive relation in Eq.
(5) generates a sequence {'“”} and it can be shown that
iterates will converge weakly to a point of S.
fUH“ZPW'PM—I'? -P,-f[“-’ (5)
The recursive relation (5) is the well-known cyclic
POCS algorithm. In its relaxed version it has the form
fi.‘H-l}:rI-M ‘]‘M’ |‘?‘T]‘f‘”} (6}
where T) is defined by T, =I+4,, (P, 1) for the
relaxation parameter 4, ; € (0,2). In the general case, this

parameter depends on the projector and on the interaction
step, as well.

Sets presented in this work are closed and convex and
they also have a non-empty intersection, but in the general
case this methodology has an extension for the case where
the sets are not convex and do not intersect themselves.
We refer the reader to references [17-19] for a more
complete discussion of these cases.
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In order to perform the 3D deconvolution and also to
take into account the nature of the Poisson noise into
COSM images, we propose the use of a prototype
constraint [20] based on the Goodman and Belsher's filter
[21] to construct the first set. It is a linear, space-invariant,
minimum mean square restoration filter for the Poisson
image noise model using the orthogonality principle in the
Fourier domain. It was first derived by Goodman and
Belsher [21] and later used by Lo [22] for 2D images with
Poisson noise. In this paper we extend the filter for the 3D
case. The filter in the 3D case is given by

GB(u,v.w) =—§£% N
[H(u.v,w)"-'r -
Y

where ]lzﬁ‘P_f-(n.r, w), N is the ensemble mean
number of photon counts and Py (u,v,w) is the power

spectrum density of the true object. Eq. (6) is used to build
the first set S, in the form of a prototype constraint [20].
The set is then given by
5i=plp-l <)
where p represents the prototype image, y represents an
arbitrary member of the set §;, and = represents the
bounded variation between p and y. The prototype image
p is created applying the Goodman-Belsher filter on the
blurred and noisy observed image. Because it is a
pointwise filter in the Fourier domain we can define the
correspondent set into the frequency domain by

azﬁqw—ﬂrsg
where P and Y are the discrete Fourier transform (DFT) of
p and y, respectively. For a particular triple of frequencies
(u,v,w) the projection for an arbitrary function y(xy.z
onto S, is given by

(8)

(9)

y =Py

Plu,v,w)—&(u,v, w; Bl V). if

- |A(Ll.\'.. w}| (10)

Y (u,v,w)= k
|A(u. v, w)| “2&u,v,w)

Y(u,v,w) otherwise

where A(w, v, w)= P(u,v,w)—Y(u,v,w) and the vector = :

is constructed as

A
gzc-Emp—ﬂr} (11)
which is the expected variation when the true solution is
known. The user chooses the constant ¢ and it is
determined by the confidence that we have about the
constraint.

The second set intends to recover some of the missing
frequencies lost due to the TF. The problem to recover the
lost frequencies is called super-resolution and it can be
achieved by imposing additional information over the
problem [23]. In this sense, we can use the a prior
knowledge about the region of support of the object as a
constraint to the recovery process, We refer the reader to

Volume 12, Number 1, December - 2003 - ACTA MICROSCOPICA

the paper of Hunt [23] to interesting considerations about
super-resolution.

Then, the set S, is the set of all functions of [inite
extent in the three directions and is defined by

Sy = {v ty(xy.2)=0 forall (x,y.20)& S}-} (12)

where S is the support of the true object f(x.y.z). The
projector for this set is given by

{}'(x, y.2) if (%, y.2)€ 8¢
y = .

0 otherwise

P

(13)

The last set imposes positiveness of the solution since
image intensity is always non-negative. We observe that
the positiveness constraint can also be viewed as a way to
achieve super-resolution because it is another source of
non-linearity that extends information below the
diffraction limit above the diffraction limit. The set is
defined by

Sy = {v sy, y,2)20  forall (x,y,2)€ S,-} (14)
and the projector is given by
Tr voryif v, 2)>
P ={}(_\,_\,A,) if y(x,v,2)20 o

0 otherwise

Then, given a starting image £ (for instance, the
blurred and noisy observed image) and the three sets
described above, we define the POCS algorithm for 3D
deconvolution of microscopic biological images as

f{”+]|=P3‘P3‘P|'f“” (16)

Results

We have implemented the algorithm of Eq. (5) in a
UNIX environment using C++ language. In the
implementation of Eg. (7) we used the periodogram
technique for the power spectrum density estimate of the
true image. However, it is well known that the
periodogram is a biased estimate of the power spectrum
and we expect that the results could be further improved
by using more accurate techniques of estimation. The
mean number of photon counts N was estimated under a
uniform 3x3x3 volumetric window over the observed
image. In Eq. (11) we assume ¢ = 1 for the confidence
interval for all results, which implies 50% of confidence
in the case of distributions that are symmetric about their
mean. The fast Fourier transform algorithm is adopted
henceforth.

We have tested the algorithm with synthetic images
(phantoms) and also with polystyrene bead images. A test
phantom consists of a 64x64x64 pixels image with several
square structures which extends through all three
dimensions and has sharp edges. Figure | shows two
sections of the phantom. Figure 2 shows the
corresponding sections of the phantom degraded by a
theoretical PSF and also by a signal-dependent Poisson
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noise. We have used the Washington University's
XCOSM software [6] in order to calculate the theoretical
PSF and also to simulate a standard non-confocal (wide-
field) microscope with a 100X objective lens, a numerical
aperture of 1.3, a refractive index of the lens immersion
oil of 1.515 and an emission wavelength of 530 nm.

. E :

(a) (b) 0.0
Figure 1: 64 x 64 image sections of the intensity of the
phantom: (a) slice 23; (b) slice 39. The voxel size is 0.1426
x 0.1426 x 0.1426 microns.

n n . .

(a) (b) 0.0
Figure 2: Sections through the simulated microscopic data
and degraded by Poisson signal-dependent noise. In order
to simulate a standard non-confocal microscope, the
thearetical point spread function (PSF) was calculated
using the Washington University XCOSM software, where
the PSF corresponds to a 100X objective lens with a
numerical aperture of 1.3.

Figure 3 shows the sections of the recovered phantom
image using the cyclic POCS method of Eq. (16) with the

three sets above, The method converged in only 18
interations.
. u &
'
ri) (h) 0.0

Figure 3: Sections of the restored image using the POCS
method of Eq. (16). The improvement in SNR of the
restored image is 12.59 dB. The POCS algorithm
converged in 18 iterations.

From Figure 3 we observe that the algorithm was able

to remove most of the blurring and also improve the
contrast into the phantom image.
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There exist in the literature several figures of merit to
quantify the results of the restoration. We have chosen the
improvement in signal to noise ratio to check the amount
of restoration of our method. The improvement in signal-
to-noise ratio (ISNR) in decibels (dB) is defined by

N3

X(Sfy—&; )’
ISNR =10-log,, = (17
Y(f.—1)

where f; is the jth element of the phantom image f,in

vector-matrix notation, f; is the jth element of the

restored image f and g; is the jth element of the
degraded phantom image g . The ISNR for the phantom in
Figure 3 was 12.59 dB.

In order to check the super-resolution capability of
the method we have applied the algorithm for the image in
Figure 2 using only the sets §;, and S;. Figure 4 shows the
restored sections in this case where the algorithm
converged in 27 interactions and the ISNR was 9.49 dB.

1910.89

(a) (b) 0.0
Figure 4: Sections of the restored image using the sets Sy
and S3. The improvement in SNR of the restored image is
9.49 dB. The POCS algorithm converged in 27 iterations.

We observe that the shapes of the structures in the
Figure 3 are sharper than the shapes in Figure 4. Figure 5a
shows a section of the 3D FT of the recovered image from
Figure 3 and Figure 5b shows a section of the 3D FT of
the recovered image from Figure 4.

(a) (b)
Figure 5: (a) 3D Fourier transform of the restored image
using the sets Sy, Sz and Ss; (b) 3D Fourier transform of
the restored image using the sets S; and S;
We see that the use of the sets S, $; and S;1in Eq. (16)
is able to recover more frequencies than the use of only
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the sets S, and S: as one can see comparing the Fourier
spectrum in Figure 5a and Figure 5b.

Figure 6a and 7a show sections of a spherical bead
image with 15 <m of diameter. The image was acquired
using a wide-field microscope with a 60X objective lens, a
numerical aperture of 1.4, a refractive index of the lens
immersion oil of 1.515 and an emission wavelength of
630 nm (red) in Figure 6 and 530 nm (green) in Figure 7.

Figure 6b and 7b show the sections of the restored
bead images using Eq. (16).

(a) (b)
Figure 6: (a) Original bead image with emission
wavelength of 630 nm; (b) Restored image.

(a) (b)
Figure 7: (a) Original bead image with emission
wavelength of 530 nm; (b) Restored image.

Figure 8 shows an example of a blurred and noisy real
3D image and Figure 9 shows the corresponding
recovered image.

(a) (b)
Figure 8: Sections of the 128x128x128 blurred image of an
endoplasmic reticulum cell. The image was acquired using
a fluorescence microscope with a 20X 0.75NA lens. (a)
slice 65; (b) slice 75.
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(a) (b)
Figure 9: Sections of the restored endoplasmic reticulum
image.

Discussion

We have used a cyclic POCS method for 3D
deconvolution of biological microscopic images. From the
results one can note that this methodology presents a fast
convergence using the three sets above and it was able to
remove most of the blurring of the degraded images as
one can see from the ISNR measurements. Also, the
method presented a good visual performance for real 3D
biological images. We have tested the method for different
levels of Poisson noise and we can verify the robustness
of the algorithm for highly noise images. Also, analyzing
the FT of the restored images (Figure 5) we conclude that
the method is able to achieve super-resolution.

Furthermore, it had a fast convergence and it
demonstrated a good performance in terms of both visual
results and cost-benefit analysis for all the studied images.
However, we can further improve the convergence rate of
the POCS algorithm using other approaches for the set
theoretic image recovery problem. For instance,
Combettes [17] has proposed an extrapolated parallel
projection method that out performs the convergence rate
for the POCS method where the relaxation parameter into
Eq. (6) extrapolates the interval (0,2). Further, we are
working to incorporate into the method other constraints
as, for instance, to reduce regularization artifacts
generated by minimum mean square filters as Wiener and
Goodman and Belsher’s filters and also to consider other
kinds of noise as the additive, signal independent one that
cames from the CCD camera.

We conclude that the POCS method can be a
powerful tool to be applied in optical-sectioning
Microscopy.
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