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ABSTRACT
The stellate neurons of cerebellar cortex molecular layer are easily identified at light microscopy, scanning and
transmission electron microscopy levels since they are the only short axon nerve cells existing in the middle and outer
thirds of cerebellar cortex molecular layer. Some internal details of fractured stellate neurons, such as GERL complex,
endoplasmic reticulum and nuclear chromatin have been three-dimensionally viewed by scanning electron microscopy
and the freeze-fracture method, taking advantage of the washing out of cytoplasmic soluble proteins from the fracture
face induced by the freeze-fracture process. Freeze-etching replica technique for transmission electron microscopy
shows the distribution of nuclear pores and the three-dimensional relief of endoplasmic reticulum and cell organelles.
The stellate cell axon appears as a unique process directed toward Purkinje secondary and tertiary dendritic branches.
The contoured stellate dendrites exhibit a beaded aspect and frequent bifurcations. Parallel and climbing fibers, and
basket cell axons establish axospinodendritic and axosomatic contacts with stellate neurons and their dendritic
processes. Axodendritic connections between stellate cells also are distinguished. Stellate neurons exhibit
immunopositive reactions for Synapsin-I, PSD-95, GluR1, CaMKII and N-cadherin.
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MICROSCOPÍA CORRELATIVE DE LAS NEURONAS ESTRELLADAS CEREBELOSAS

RESUMEN
Las neuronas estrelladas de la capa molecular del cerebelo son facilmente identificables al microscopio óptico,
electrónico y de barrido por ser las únicas neuronas de axón corto existentes en el tercio medio y externo de la capa
molecular de la corteza cerebelosa. Algunos detalles internos del citoplasma, tales como el complejo de Golgi, el
retículo endoplasmático, y el núcleo se visualizan mediante microscopía elctrónica de barrido y la técnica de
criofractura para microscopía de barrido, debido al lavado de las proteínas solubles del citoplasma por la técnica de
criofractura. La técnica de crifractura para microscopía electrónica de transmisión mostró la distribución de los poros
nucleares y el relieve tridimensional del retículo endoplasmático y los organelos celulares. El axón único de las
neuronas estrelladas aparece dirigido hacia las ramificaciones dendríticas secundarias y terciarias de las células de
Purkinje. Las dendritas muestran aspecto contorneado, aspecto varicoso y frecuentes bifurcaciones. Las fibras paralelas,
trepadores y axones de células de cesta establecen sinapsis  axosomáticas espinodendríticas asimétricas con las
dendritas de las neuronas estrelladas. Tambien se observan sinapsis axodendríticas entre células estralladas. Las
neuronas estrelladas muestran reacciones inmunopositivas para Sinapsina I, PSD-95, GluR1, CamKII y N- caderina.

Palabras claves: Neuronas estrelladas, cerebelo, microscopía correlativa,inmunohistoquímica

INTRODUCTION

Stellate cells, the intrinsic interneurons of the cerebellar

molecular layer, were earlier described at light

microscopy level by Fusari [1], Ramón y Cajal P. [2],

Ponti [3], Ramón y Cajal S. [4],  Smirnow [5], Estable

[6], Jakob [7], Scheibel and Scheibel [8] and Fox et al.

[9]. The transmission electron microscopic (TEM)

features were earlier studied by Herndon [10], Fox et

al. [9], Lemkey-Johnston and Larramendi [11,12],

Castejón [13], Sotelo [14,15], Palkovits et al. [16], and

Mugnaini [17].  The most complete description of these

neurons has been given by Chan-Palay and Palay [18],

and Palay and Chan-Palay [19] by means of camera

lucid drawings of Golgi light microscopy preparations

and transmission electron microscopy (TEM). Castejón

and Castejón [20)], and Castejón [21-23] described the

TEM features of stellate neurons of mouse cerebellar

cortex. Later, Castejón and Castejón [24] reported the

glycosaminoglycan content, freeze-etching features,

and three-dimensional morphology of stellate neurons

by scanning electron microscopy (SEM). Castejón et
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al. [25], using SEM and TEM, described the

axodendritic connections between granule cell axons or

parallel fibers and stellate cell dendrites. Obata et al.

[26] firstly described putative GABA-releasing

terminals from basket/stellate and Golgi cells

immunostained with glutamate decarboxylase-67

antibody. Benagiano et al. [27] demonstrated GABA

immunoreactivity in the cell bodies of stellate neurons

of human cerebellar cortex by light and electron

microscopy. Biagotti et al. [28] found by means of

electron microscopy analysis that the basket and

stellate cells, as well as the Golgi cells, have a

remarkable glucose-6-phosphatase deshydrogenase

(G6PD) activity. Corticotropin-releasing factor and

urocortin espression  in stellate neurons were found by

Swinny et al. [29]. Fritschy et al. [30] found

GABAergic axodendritic synapses of stellate neurons

on Purkinje cells. More recently, Astori et al. [31] have

demonstrated GABA release from stellate neurons onto

Purkinje cells. Castejón [32] recently described

Synapsin-I, PSD-95, GluR1, N-cadherin and Ca
2+/Calmodulin-dependent Protein Kinase II Alpha

immunopositive reactions of stellate neurons.

The present review describes the light and Golgi light

microscopy, SEM and TEM features of stellate

neurons, and positive immunohistochemical activity of

Synapsin-I, PSD-95, GluR1, Calcium/calmodulin-

dependent protein kinase II (CaMKII) of stellate

neurons, and N-cadherin, and their synapses with

granule cell axons, climbing fibers, and from axonal

terminals of neighboring stellate neurons.

LIGHT MICROSCOPY

Plastic semithin sections of mouse cerebellar cortex

stained with toluidine blue show the triple layered

structure of cerebellar cortex formed by granule cell,

Purkinje cell and molecular layers. The distribution of

stellate neurons can be appreciated in the middle and

outer third molecular layer [13]. (Fig.1).

Fig. 1. Mouse cerebellar cortex showing the stellate
neuron (SN) distribution in the molecular layer. Basket
cells (BC), Bergmann glial cells (BG), Purkinje cells
(PC), and the granule cell groups (GC) also are
distinguished. (Castejón, 1968).

Golgi light microscopy

Close examination of the molecular layer with Golgi

light microscopy technique shows the topographic

relationship of stellate neurons with the secondary and

tertiary Purkinje dendritic ramifications. The stellate

cell axons directed to the Purkinje  dendritic processes

extend in the middle and outer thirds of molecular layer

(Fig. 2).

Fig. 2. Mouse cerebellar cortex.  Golgi stained thick
paraffin section showing a stellate neuron (SN) sending
its axonal process (arrow) toward the Purkinje tertiary
spiny dendrites (PD). Some stellate neuron dendrites
also are seen spreading in the molecular layer
(Castejón, 1968).

In addition, Paula-Barboza et al. [33] described by

means of the combined Golgi light microscopy and
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Golgi-ultrastructural method  the stellate cell axonal

descending branches forming a pericellular basket

around Purkinje cell soma, and contributing to the

pinceaux surrounding the Purkinje axonal initial

segment, where they establish septate-like junctions.

CONVENTIONAL SCANNING ELECTRON

MICROSCOPY

Fish and human cerebellar cortex specimens

conventionally processed for conventional SEM, and

ethanol-cryofracturing tecnique [34-38] show the

superficial short-axon stellate neurons with round,

elliptical or fusiform somata in a parasaggital fracture

of the outer third molecular layer.  These superficial

stellate cells are easy to recognize, since they are the

only neurons in the upper molecular layer, and appear

surrounded by bundles of passing granule cell axons or

parallel fibers [39]. (Fig.3).

Fig. 3. Teleost fish cerebellar cortex.  Scanning
electron micrograph showing the stellate neuron (SN)

in the outer third molecular layer surrounded by
bundles of parallel fibers (PF). The arrow indicates the

parallel fibers approaching to the stellate cell soma
(Castejón, 1988).

Three to five beaded short and ramified dendrites

radiate from the cell body toward the neighboring

Purkinje dendrites or other stellate cells [36-38]. The

axon originates by way of a typical triangular shaped

axon hillock and, after a short initial segment bifurcates

into tenuous varicose collaterals. The short axonal

process directed to the Purkinje cell dendrites, and the

convoluted and cryodissected dendritic processes can

be appreciated in SEM human cerebellar cortex

prepared by means of ethano-cryofracturing tecnique of

Humphreys et al. [35]. (Figs. 4 and 5).

Fig. 4. Scanning electron microscopy of human
cerebellar cortex showing a stellate neuron (SN), and

its axonal processes (arrows) directed toward the
Purkinje dendrite (Pd). Gold-paladium coating.

(Castejón and Castejón, 1987).

Fig. 5. Human cerebellar cortex. Conventional SEM
and ethanol-criofracturing technique. Outer surface of a

stellate neuron (SN) showing the dendritic processes
(arrow) ending on dendritic twigs (arrowhead).

(Castejón and Castejón, 1987).

SEM and SEM freeze-fracture technique

By means of the freeze-fracture technique for SEM

[25,35-40], the stellate neurons are fractured through

the equatorial plane showing at low magnification the

condensed pattern of nuclear heterochromatin, and the

three-dimensional image of the GERL complex

[41,42], formed by the Golgi cisternae and their sacs,
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endoplasmic reticulum canaliculi, and lysosomes. The

dendrites exhibit also the outer surface of endoplasmic

reticulum. The inner cytoplasmic details have been

visualized taking advantage of washing out of cytosol

soluble proteins induced by the SEM freeze-fracture

process [43,44]. (Fig.6).

Fig. 6. Teleost fish cerebellar molecular layer (ML)
showing the fractured stellate neuron (SN). SEM

freeze-fracture method. The nucleus (N), the GERL
complex (arrowheads), and the endoplasmic reticulum
(ER) are observed extending from the cell body to the

dendritic process (arrow). (Castejón, 1988).

TRANSMISSION ELECTRON MICROSCOPY

Stellate cell soma

The fine structure of stellate neurons shows the general

features of a microneuron characterized by a scarce

band of perinuclear cytoplasm containing rough

endoplasmic reticulum caniliculi, free ribosomes and

polysomes, bundles of microtubules, motochondria,

Golgi complex, lysosomes, and coated vesicles [24].

(Fig.7).

In addition, Ruela et al. [45] earlier described cilia in

stellate neurons of rat cerebellum. Castejón and

Castejón [24] demonstrated by means of light and

electron microscopy histochemistry the presence of a

homogenous alcianophilic substance within the stellate

neuron cytoplasm characterized as a

glycosaminoglycan sensitive to hyaluronidase

treatment, mainly hyaluronic acid.

Fig.7. Mouse cerebellar cortex. Transmission electron
micrograph of stellate neuron showing the nucleus (N),

the cytoplasm containing scarce profiles of
endoplasmic reticulum, numerous free ribosomes,

bundles of microtubules (Mt), and mitochondria (M).
The neighboring neuropil (NL) of molecular layer also

is noted. (Castejón and Castejón, 1987).

Monteiro [46] established by means of a morphometric

analysis at TEM level statistically significant

differences in data concerning perikaryon volume,

perikaryon surface and intracellular organelle

composition between basket and stellate cells, and

postulated that each class of interneuron should be

designated with a specific name.

A complex neuropil formed by the Purkinje-parallel

and climbing fiber spine synapses, surrounded by the

Bergmann glial cell cytoplasm is observed adjacent to

the stellate neurons.

Stellate neuron synapses

According to earlier TEM studies, climbing and

parallel fibers, and basket cell axons establish

axosomatic and axodendritic contacts with stellate cells

[11,19,24,39,47,48]. Small synaptic buttons of

climbing fibers, “en passant” parallel fibers, basket cell

and Lugaro cell axons, or axonic terminals of

neighboring stellate neurons are observed attached to

the somatic neuronal surface. Basket cell endings

exhibit ellipsoidal and flattened synaptic vesicles. On

the contrary, large synaptic endings of climbing fiber

characterized by the presence of spheroid synaptic

vesicles are observed making axodendritic junctions

[49,50]. (Figs.8 and 9).
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Fig. 8. Mouse cerebellar molecular layer. TEM of
stellate neuron displaying the nucleus (N), the

mitochondria (M), Golgi complex (GC), scarce profiles
of rough endoplasmic reticulum (ER), and an

axosomatic synapse (AS, arrow). (Castejón and
Castejón, 1987).

Fig. 9. Mose cerebellar cortex. Stellate neuronal soma
(SN) exhibiting axosomatic synapses with a large

climbing fiber synaptic ending (CF) characterized by
spheroid synaptic vesicles, and with a small basket cell

ending (BC) featured by flattened vesicles.

TEM and the freeze-etching technique

With the freeze-etching technique the smooth fractured

cytoplasm of stellate cells is observed exhibiting the

three-dimensional relief of endoplasmic reticulum and

cell organelles embedded in a smooth surface cytosol.

Axodendritic contacts of climbing fibers also are found

(Fig. 10).

Fig. 10. Mouse cerebellar molecular layer. TEM and
freeze-etching technique. Stellate neuron cytoplasm
(SN) displaying the endoplasmic reticulum profiles,

free ribosomes embedded in the cytoplasm, and a
dendritic process (D). A large climbing fiber synaptic

ending (CF) appears synaptically apposed to the
dendritic process (Castejón et al., 2000).

CONFOCAL LASER SCANNING MICROSCOPY

AND IMMUNOHISTOCHEMISTRY

Synapsin-I immunohistochemistry

Slices of rat cerebellar cortex labeled with Synapsin-I

show the distribution of small puncta surrounding the

stellate neurons and their process corresponding to the

distribution of presynaptic endings of climbing fiber

and parallel fibers [32,51]. (Fig. 11).

PSD-95 immunohistochemistry

Slices of rat cerebellar cortex labeled with PSD-95

show the immunopositive stellate neurons and their

process corresponding to the distribution of postynaptic

endings of climbing fiber and parallel fibers [32,51].

(Fig. 12).

PSD-95 is a postsynaptic protein predominantly

associated with postsynaptic densities [51].
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Fig.11. Rat cerebellar cortex. Note the small puncta
expressing Synapsin-I positive immunolabeling

surrounding the stellate cells (SC) at the molecular
layer. The Purkinje cell layer (PC) and granular layer

(GL) also are appreciated. (Castejón and Dailey, 2009).

Fig.12. Rat cerebellar cortex immunolabeled with
PSD-95 showing at the level of molecular layer the

immunopositive stellate neuron (SN) corresponding to
their postsynaptic axosomatic and axodendritic sites.
Note also the immunopositive postsynaptic sites of
granule cell dendritic tips at the glomerular regions

(GR) in the granular layer.

GluR1 subunit immunohistochemistry

Rat cerebellar slices labeled with PSD-95 show small

red puncta corresponding to GluR1 subunits of AMPA

receptors surrounding stellate and basket cells in the rat

molecular layer [32,52]. (Fig. 12).

Fig.13. High magnification of rat cerebellar slice
double labeled with anti-GluR1 monoclonal antibody.
The secondary antibody used was Alexa-488 goat anti-
rabbit (GAR) IgG.  Note the GluR1 immunoreactivity
of stellate cell soma (SC) and processes, basket cell
(BC), and Purkinje cell body (PC). (Castejón, 2010).

The distribution of GluR1 subunits relates this

postsynaptic AMPA receptor subclass to the excitatory

circuits of the cerebellar cortex formed by climbing and

parallel fiber synapses upon stellate neurons. Thus far,

the expression of another subunit, the GluR2 subunits-

containing AMPA receptors has been reported only on

cerebellar stellate cells [53,54].

N-cadherin immunohistochemistry

Rat cerebellar slices double labeled with a primary

antibody against N-cadherin, and Alexa 488 goat anti

mouse (GAM)-antibody [32] show strong punctate

immunostaining at the level of soma and processes of

stellate neurons (Fig. 14).
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Fig.14. Rat cerebellar slice. N-cadherin
immunostaining showing immunopositive reaction of

soma and processes of a stellate cell (SC), and Purkinje
dendritic ramifications (PD). (Castejón, 2010).

N-cadherin is a membrane glycoprotein mediating

strong homophilic adhesion and concentrated at the

synaptic junctions and neural circuits, where they exert

an active role in synaptic structure, function, plasticity,

and in selective interneuronal connections during

network function [55- 60],

Fig.15. Rat cerebellar slice double labeled with double
labeled with a primary antibody against CaMKII alpha,

and a secondary antibody the Alexa 488 goat anti
mouse (GAM)-antibody. Note the immunopositivity of

stellate, basket and Purkinje cells.
Immunohistochemistry of Ca 2+/Calmodulin-dependent

Protein Kinase II Alpha

Stellate cell cytoplasm and processes show strong

immunopositive reaction for Ca 2+/Calmodulin-

dependent  Protein Kinase II Alpha [32]. ( Fig. 15).

Calcium/calmodulin-dependent protein kinase II

(CaMKII) is a Ca2+- activated enzyme that is highly

abundant in the brain and play a major role in Ca2+-

mediated signal transduction. CaMKII constitute a

family of multifunctional protein kinase isoforms

(alpha, beta, gamma and delta).[61,62]. Lisman et al.

[62] have postulated their role in long-term information

storage, motor learning and  long-term synaptic

memory.

CONCLUSIONS

Correlative microscopy of stellate neurons made by

light microscopy, transmission electron microscopy

and freeze-etching technique, scanning electron

microscopy and cryofracture method, as wells as the

use of immunohistochemical techniques  for confocal

laser scanning microscopy have permitted a better and

deeper understanding of cerebellar structure and

function, mainly regarding  the three-dimensional

morphology of outer neuronal surface, intramembrane

morphology, stellate cell synaptic  axospinodendritic

and axosomatic contacts with parallel and climbing

fibers, and the precise localization of pre- and

postsynaptic receptors by means of

immunohistochemical techniques for Synapsin-I, PSD-

95, and GluR1 subtype of AMPA receptors. Stellate

neuron synaptic contacts with Purkinje cell

demonstrate the neural correlates of the inhibitory

action of  stellate cells upon Purkinje cells. The

axosomatic and axodendritic presynaptic contacts of

climbing and parallel fibers as demonstrated by

transmission electron microscopy and Synapsin-I and

PSD-95  evinces de excitatory action of these afferent

fibers upon stellate neurons. The GluR1

immunopositivity of  stellate neurons reveals the

presence of glutamatergic neurotransmission at the

level of stellate neuron synapses. The CaMKII

immunopositivity of stellate neurons suggest their role
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in long-term information storage, motor learning and

long-term synaptic memory. The N-cadherin positive

immunoreaction of stellate nerve cells and their

intracortical circuits demonstrate the active role of

these cell adhesion molecules  in synaptic structure,

function, and plasticity.
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