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A REVIEW: HOLZ lines and lattice parameter determination
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ABSTRACT

In convergent-beam electron-diffraction
patterns at a zone axis orientation, the bright-
field disc is ofen crossed by a set of fine dark lines
- the HOLZ lines. These lines are formed because
the diffracted beams are divided into well
separated Laue zones. The lines are valuable for
the determination of the local lattice parameter
of the crystal in the small volume traversed by
the electron beam. This is a tutorial review that
summarizes the usefulness and limitations of the
method.
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INTRODUCTION

The discs in a zone-axis convergent-beam
pattern (particularly the bright-field disc) are
frequently crossed by a set of fine dark lines
called HOLZ lines (Figure 1). Apart from their
part in the general analysis of convergent-beam
patterns, for example their contribution to
symmetry determination, these lines are valued
for their sensitivity to variation in lattice
parameter. The measured positions of the lines
can be used to determine local lattice parameter
or strain in the sample. This paper aims to be a
tutorial review of this subject.

Figure 1.

Bright-field disc of a convergent-beam
pattern of silicon at the [100] zone axis. 100 kV,
sample at liquid nitrogen temperature.
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ORIGIN OF THE LINES

Bragg's law expresses the result that for
each set of planes in a crystal there will be a
diffraction peak at a position given by

2dsin® =A

or more conveniently in three dimensional
notation

k'-k=g.

It is one of the most important characteristics of
electron diffraction, as opposed to x-ray or
neutron diffraction, that diffraction occurs for a
relatively wide range of angles about the exact
Bragg angle. This is why, in a convergent-beam
pattern, the diffracted intensity fills the whole
area of the disc. However, the width of the
diffraction peak about the Bragg angle is not a
constant. It is determined by the "strength" of the
diffracting planes. If the crystal potential is
expressed as a sum of Fourier components

LD Vgexp -2mig + r

then we can associate each component, Vg, with a
set of planes. As far as electron diffraction is
concerned, Vg is the strength of the diffraction of
the planes g. Depending on the arrangement of
the atoms in the unit cell, the V, will vary, but
overall the values of the Vg will drop off
uniformly from the origin because the scattering
of a single atom decreases with increasing
scattering angle.

So, as g becomes larger, there is a
tendency for the diffraction to become more and
more localized, to occur within a smaller range of
angles about the Bragg angle. Thus for a large
enough g, a convergent-beam disc will not fill
with intensity but show only a bright line along
the position of the Bragg condition.

When a crystal is oriented so that the
electron beam is parallel to a zone axis, the
diffraction pattern is naturally divided into Laue
zones (Figure 2). As can be seen from the Ewald
sphere construction, the zones corespond to the
intersection of the Ewald sphere with successive
planes in the reciprocal lattice. This geometry
produces a situation in which there is a sharp
break in the magnitudes of the g's. The reflections
in the zero layer (the zero-order Laue zone - those
reflections in the reciprocal lattice plane through

the origin that make up the group of reflections
near the direct beam) all have small values of g,
while reflections in the first-order Laue zone
have much larger values of g. There is a distinct
gap between the two groups. For many zone axes
in many materials, this gap coincides with the
range of g that carries the width of the
diffraction peak from wide to narrow. Wide and
narrow are not absolute terms of course. Here wide
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Figure 2.

a) Schematic diagram of the Ewald
sphere construction at a zone axis orientation. At
the origin, the sphere is tangent to a plane of the
reciprocal lattice. The reflections from that
plane form the zero-order Laue zone.

b) Schematic diagram of the diffraction
pattern corresponding to the situation shown in
a).



Figure 3.

a) Short camera length convergent beam
pattern from silicon at the [111] zone axis. 100 kV
(approx.). b) The same, but at a longer camera
length to show the central part of the pattern in
more detail. For each dark line in the bright-
field disc there is a corresponding bright line in
the first-order Laue zone.

means of the order of the smallest Bragg angle in
the crystal. In such a case, the illumination will
filt a convergent-beam disc. Correspondingly,
narrow means a good deal smaller than the
diameter of a convergent-beam disc. In such cases
the illumination will be confined to a narrow line
within the disc  (Figure 3).

The bright line in the reflection from the
first-order Laue zone removes electrons from the
corresponding position in the discs of the zero
order reflections - in particular from the bright-
field disc - so that a dark line is produced. As
indicated above, the Laue zones are numbered
starting with zero for the layer through the
origin. All Laue zones other than the zéro-order
zone are known collectively as higher-order Laue
zones, hence the acronym HOLZ. The zero-order
Laue zone is sometimes referred to, for reasons of
euphony, as the zero layer.

J- 3 LAUCOo

Dynamical effects introduce
complications into this picture but leaving them
aside for the moment, we have a clear and rather
simple picture of the origin of HOLZ lines. Each
line corresponds to diffraction into a particular
reflection in a higher-order Laue zone. For each
reflection in the HOLZ ring itself, there is a dark
line in the bright-field disc in a position
matching the position of the HOLZ reflection in
the HOLZ disc (Figure 4). In this model, the
position of each line is predicted directly from
Bragg's law.

MEASURING LATTICE PARAMETER

In a more conventional method of
measuring lattice parameter, whether by x-rays
or by electrons. the lattice parameter is
determined by measuring the Bragg angle. More
precisely, the angle measured is the angle
between the incident beam and the diffracted
beam, which is twice the Bragg angle. The
equivalent measurement here would be to measure
the distance between the line in the bright-field
disc and the line in the corresponding HOLZ
reflection. However, in this case we can make a
great improvement in the precision of the result
by making the measurement differently.
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Figure 4.

Schematic diagram to show that the
HOLZ line in the bright-field disc lies in the
same position as the line in the HOLZ reflection
(even if the disc itself is not normally visible for
the reflections in the HOLZ ring). The separation
between the two lines is g (if the diffraction
pattern is treated as in reciprocal space) or ZGB

(if the pattern is treated as in angular space).

The priciple is to measure the position of
a single line - HOLZ line - with respect to a
nearby reference point. Not only is it more precise
to do it this way, but it also avoids systematic
errors and the correspondingly awkward
calibration problems. Normally we are looking
for a small change in lattice parameter, or what
is equivalent, the strain in the crystal. In this
case it is not a good idea to measure the distance
between the line in the HOLZ reflection
(sometimes called the excess line) and the
corresponding line in the bright field disc
(sometimes called the deficit line), because then
we are trying to measure a small change in a large
distance. This is intrinsically imprecise but also
introduces additional errors because such a
measurement requires a short camera length
diffraction pattern and such patterns are. very
liable to have substantial distortions in them.

Conversely, if the position of the line in
the bright field disc is determined with respect

to a local point of reference, these difficulties are
avoided. The change in lattice parameter is
measured precisely because the shift is measured
directly. Distortions are not a problem because
the measurements are all made close to the center
of the pattern where distortions are negligible.

The point of reference used to determine
the position of the HOLZ line could be the zone
axis. The zone axis is clearly identifiable and
would thus make a convenient point from which
to measure. However, it is generally hard to
locate the zone axis (the center of the pattern)
with sufficient accuracy especially when the
symmetry of the pattern may be broken by the
very strain that we wish to determine. A better
way turns out to be to use, not a fixed reference, but
the positions of the HOLZ lines with respect to
each other (Figure 5).

In early work in this field, it was noted
that if two lines intersect at a small angle (and if
a change in lattice parameter causes them to
move in opposite directions) the point of
intersection moves much farther, for a given
change in lattice parameter, than the lines
themselves. Thus a measurement of the distance
between two intersection points, appropriately
chosen, would give a more precise value than a
direct measurement of the line shift. Nowadays
it is more usual, indeed it is almost universal, to
simulate the pattern of all the lines in the HOLZ
disc with a computer program. [1] The advantage
of this technique in addition to its convenience is
that it allows us to obtain the best fit while
varying all the unit cell parameters, something
that would be extremely difficult making
measurements between intersections (Figure 6).

HOLZ LINES VERSUS KIKUCHI LINES

A HOLZ line that occurs in the disc of a
convergent-beam diffraction pattern is formed at
the locus of positions at which Bragg's law is
satisfied for a set of planes in the crystal. In this
respect HOLZ lines are similar to some other
lines that appear in electron diffraction. The
Kikuchi lines that are formed in the diffusely
scattered inelastic background of electron
diffraction patterns also lie at the locus of Bragg
reflection for the atomic planes. In Tanaka
patterns (or wide-angle convergent-beam
patterns), there are also lines at these positions.
They are distinct from Kikuchi lines in that
inelastic scattering is not involved and in that



Figure 5.

a) TEM micrograph of a nickel-based
superalloy. Two phases are present: the matrix,
Y, and the ordered cuboid precipitates, ¥'. b)
Bright-field disc of a convergent-beam pattern
from the ¥, ¢) The same but from the y phase, 100
kV. The shift of the lines between the two
patterns was used to show a lattice parameter
change of about 0.5% between the phases.
(Courtesy M.S. Dean, M. Sc. thesis, University of
Bristol 1977).

the symmetries are different. The present author
has used the term Bragg lines to distinguish these
lines from Kikuchi lines.

Since all of these lines fall in positions
determined by the same construction, it is
appropriate to ask why HOLZ lines are favored
over other such lines for measurement of strain
and lattice parameter. There are three reasons
for this.

1 In order to compare one sample with
another it is important to be able to set the
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samples at the same orientation. When that
orientation is a zone axis, as is the case for HOLZ
line work, this is easy to do. The zone axis is easy
to recognize and can be accurately centered. By
contrast, if the sample is at some arbitrary
orientation, then it may be difficult to find the
same angle again in the next specimen.

2 The precision with which the change in
lattice parameter may be determined is
dependent on the accuracy with which the
position of the line can be judged. This in turn
depends on the width of the line. The narrower
the line, the better the precision. As indicated
above, the strength of the line is, in general,
smaller for larger values of g. This is
advantageous because it implies that the finest
lines, for which the position can be determined
most accurately, are just those lines for which g is
large. If a change in line position (A g) is used to
calculate a change in lattice parameter (A a), the
sensitivity is increased:

Aa/a=-Ag/g
The larger the value of g, the better the precision
of the value.

Detailed calculation as well as
experimental observation shows that the
visibility of HOLZ lines is increased by
dynamical interactions. That is to say that for a
given magnitude of g, a HOLZ line will be more
visible than the corresponding Kikuchi line or
Bragg line. [2] This enhancement factor means
that the HOLZ lines used at a zone axis
typically have a g that is longer than the g's
that could be used away from a zone axis. Thus
the precision is higher.

3 The same dynamical interaction that
gives better precision in strain measurement,
means that more reflections are within the useful

range. The density of HOLZ lines in a zone-axis
pattern is higher than the density of lines in a
Kikuchi pattern or in a Tanaka pattern.
Moreover, the lines will all have g's of similar
magnitude and that magnitude will be near the
optimum value for lattice parameter
determination (i. e. the maximum that will give
visible lines). Very often at a zone axis, there are
many visible lines so that there are many
parameters (the line positions) to fit to the
unknowns (the unit cell dimensions and angles).

DYNAMICAL EFFECTS

The enhancement of the visibility of lines
at the zone axis mentioned above has the
advantage that it improves the precision of the
measurement. However the same dynamical
interaction produces an important complication.
Where the dynamical interactions are strong, the
position of the line is not that predicted by
Bragg's law. The line is shifted.

This would appear to invalidate the
method. However it can be shown that, at a given
zone axis, all the lines are displaced as if
Bragg's law is still valid but for a value of the
electron wavelength (i. e. microscope voltage)
which is not the true value. [3] Thus the
microscope voltage has to be treated as an
adjustable parameter rather than as a known
value. The microscope voltage that is used in the
kinematical calculation depends on the material,
on the zone axis, and on the order of the Laue
zone (i. e. the second-order lines - if visible -
would need to be simulated using a different
voltage from the first-order lines). Provided that
these conditions are taken into account,
dynamical effects do not restrict the ability of
the technique to measure changes of lattice
parameter. The method remains a precise method
of determining strain in the crystal.

Figure 6 a) TEM micrograph of
a cross-section of a thin film
structure. The substrate, of
pure silicon, is on the left
The third layer is of silicon
alloyed with 4.5%
germanium, The lattice
parameter of the alloy would
be different from that of pure
silicon but, parallel to the
interface, it is constrained to
be the same as that of silicon
because of the continuity of
the planes.

.
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€C a=0.54335nm b=c=0.54294nm

Figure 6. da=0.5441nm b=0.54294nm ¢c=0.5441nm

b) Bright-field convergent-beam disc from the pure silicon some way from the interface. To
obtain the computer match the lattice parameter from x-ray diffraction is assumed and the microscope
voltage treated as adjustable.

¢) Bright-field convergent-beam disc from the alloy taken close to the interface with the silicon.
The strain due to the substrate introduces a tetragonal distortion. The lattice parameters are obtained
using the same voltage as for a), not considered adjustable now.

d) Bright-field convergent-beam pattern from the alloy further from the interface. Surface
relaxation of the stresses changes the strain from tetragonal to orthorhombic. (Courtesy C.J. Humphries
et. al. see Ultramicroscopy 26: (1988) 13-24).
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In order to determine absolute values of
lattice parameter, that is to make the method
accurate as well as precise, one of two options is
available, although they have rarely been
undertaken in practice. They are calibration or
computation. In order to calibrate the effect of
dynamical interaction, it would be necessary to
have a sample of the same crystal structure as
the sample under study (and at the same zone
axis) but when the lattice parameter is known (e.
g. from x-ray diffraction). This may seem to
negate the whole point of the exercise but
circumstances could arise where it could be useful.
For example, if the aim of the experiment is to
determine the strain in a precipitate due to the
surrounding matrix, then a bulk sample of the
precipitate phase - which would be free of such
strain - could be used for calibration. The
alternative approach to making the method
accurate is to do a full dynamical calculation.
This means that the crystal structure must be
known, whereas relative measurements can be
made even for unknown phases. Until recently to
do such calculations in full would have seemed
too big a proposition. Now the full simulation can
be done in an hour or so on a good work-station, so
that it is quite reasonable to do it. [4].

An additional complication, due to the
effects of dynamical diffraction, is that the
HOLZ ring may show, not a single line in each
reflection, but more than one. This is not usually a
problem because, in most cases, only a single set of
lines is visible in the bright-field disc. In the
HOLZ reflection the lines are bright against a
background that has very low intensity, thus two
lines can be seen even when one is much brighter
that the other. On the other hand, in the bright-
field disc, the HOLZ lines are dark on a bright
background. The contrast of the lines is very
weak. The drop in intensity at the line is only a
small fraction of the total intensity. In this case
the visibility of the line depends critically on
how strong the line is. Only the strogest line is
generally visible.

CHOICE OF ZONE AXIS

Not all convergent beam patterns, show
HOLZ lines. Indeed, many do not. Two factors
determine HOLZ line visibility: geometry and
order. The strength of a HOLZ line depends on
the magnitude of Vg (and the dynamical enhan-

cement). Vg in turn depends on the magnitude of g

(and structure factor effects). Thus, if the zone
axis is such that the magnitude of g for the
HOLZ reflections is too large, the HOLZ lines
will not be visible because the contrast will be
too weak. Conversely, if the orientation is such
that the magnitude of g is smaller, the precision
of the determination will be poor, in part because
g is smaller and in part because the lines are
broader. In an extreme case, the lines will be so
broad that they cannot be distinguished from the
zero-layer diffraction.

The primary determinant of HOLZ line
quality is, therefore, the diameter of the HOLZ
ring.

The convergent-beam pattern is taken at a
zone - axis orientation, so the incident electron
beam is perpendicular to a plane of the reciprocal
lattice. The spacing of these planes along the
beam direction determines the HOLZ diameter.

For a given crystal structure, the unit cell
volume is fixed so that the spacing between the
planes is bigger when the density of reflections in
the plane is higher. For example, in face-
centered cubic crystals, the most dense plane of
the reciprocal lattice is (110). Therefore the
magnitude of g for HOLZ reflections is highest
for the 110 zone axis . At the 110 zone axis, HOLZ
lines are not seen. The next densest plane in the
reciprocal lattice is (100). At the 100 zone axis,
HOLZ lines are seen only with difficulty. For
many f.c.c. materials, to see HOLZ lines at 100, it
is necessary to cool the specimen. Lowering the
sample temperature increases the line visibility
because it reduces the inelastic scattering and so
increases the contrast in the elastic part of the
diffraction pattern. The 111 zone axis has the
radius of the first-order Laue zone such that the
HOLZ lines are clear even at room temperature
but still sharp enough to give good precision in
the determination of the lattice parameter. For
this reason this orientation is frequently seen in
publications that use HOLZ line analysis.
Because 100 is a difficult zone axis, the nearby
411 zone axis is often used in the case of samples
oriented close to 100.

In general the practical rule is to pick a
zone axis that gives the largest diameter for the
first-order Laue zone that still gives visible lines
in the bright field disc. The choice of microscope



operating voltage is relevant. A lower voitage
gives a larger electron wavelength and a smaller
radius to the Ewald sphere. This reduces the
diameter of the HOLZ ring. Raising or lowering
the microscope operating voltage can therefore be
used to change the visibility of the lines if
necessary.

The other factor that affects the
visibility of the lines is the degree of order in the
crystal. When the temperature of the specimen is
raised, the effect is more dramatic on high-order
reflections (large g) than on low. This is because
the high g reflections correspond to a small
planar spacing and the atom motion due to lattice
vibrations is larger as a fraction of the spacing
between the planes. In a similar way, the effect
of disorder in the crystal is to displace atoms
from their sites (in the case of disorder, the
displacement is constant while, in the case of
thermal vibration, the displacement varies with
time) and this displacement willi have a more
dramatic effect when it is large compared to the
spacing of the planes. Disorder will wash out
large angle diffraction effects including HOLZ
lines. If HOLZ lines are invisible when they
might otherwise be expected, one possible
explanation is that there is some form of disorder
in the crystal.

SURFACE RELAXATION

¢ HOLZ line analysis leads to a
measurement of the lattice parameter or strain in
the region of the sample that the electron beam
traverses. Of necessity this region is part of a
thin foil, suitable for transmission electron
microscopy. For some applications this is what is
wanted. However in most cases, the measurement
that is needed is the strain that was present in
the bulk material - prior to thinning for
microscopy. In preparing a thin section from a
bulk sample, two new surfaces are introduced and
there can be no component of stress normal to these
surfaces. Prior to the thinning, however, there
would have been (in general) stress across these
planes. The relaxation of these components of
stress, as the new surfaces are exposed, will
produce deformation in the sample - its state of
strain will not be the same in the thin foil as it
was in the bulk.

One way in which this effect can be
handled is to make a model of the elastic state
(stress/strain) of the bulk and from that to
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predict the corresponding state in the thin film
and to compare that with the experimental
result. This is difficult and less than satisfactory
because of the possibility that the solution is not
unique.

EXPERIMENTAL LIMITS
A. Thickness

The detail in convergent-beam patterns
develops only in specimens of a certain thickness.
Very thin samples produce patterns in which the
intensity in the discs is uniform. HOLZ lines
appear clearly in foils that are somewhat
thicker than those that give zero-layer detail,
since the relevant extinction lengths will be
greater. Conversely, if the sample is too thick,
the HOLZ-line constrast will be lost in the
diffuse scatter. Nonetheless there is a fairly
broad range of specimen thickness for which good
patterns can be obtained. Typically a sample
thickness of about 100 nm is suitable.

B. Diameter

The size of the region that contributes to
the pattern is the size of the focused beam plus
any spreading of the beam in the specimen. For a
sample on the order of 100 nm thick, the beam
spreading will be perhaps 20 nm. Therefore there
is no point in trying to work with a beam that is
much smaller than this. Indeed, it may be
desirable to use a larger beam - this gives more
intensity and makes the experiment easier. There
is a balance to be struck; a larger beam makes the
experiement easier, while smaller beams tend to
produce patterns of better quality.

C. Uniformity of strain

In principle there is no limit on the
magnitude of the strain that can be measured
(except that the sample must be able to support
it). There is a limit on the uniformity of the
strain. For the convergent-beam pattern to have a
clear set of sharp lines, the strain must be
constant within the volume that the beam
traverses. Any strain gradient in that volume
will produce a degeneration of the pattern that
will make the strain difficult or impossible to
measure. This is true whether the strain gradient
is long range or localized. Defects in the crystal
can produce such localized strain gradients. For
example, dislocations have been shown to
produce splitting and blurring of the HOLZ lines.
[5].
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D. Precision

How accurately the measurements can be
made depends on the quality of the patterns (how
fine the lines are) and how delicately the
positions of the lines can be matched to the
computer output. Characteristic values for the
precision that can be attained lie in the range

10 to 2x10™* The best values may only be
obtained by cooling the sample.

SUMMARY

HOLZ lines are used for the
determination of local values of the lattice
parameters of the sample; if global values were
required, x-ray methods would be preferred. The
technique is particularly good at determining
how the lattice parameter varies from place to
place within the same sample or between
different specimens of the same structure. Such
local variation can arise from two main causes.
The change can be due to local changes in
composition or due to the stresses imposed on the
region in question by the remainder of the sample.
In both cases the technique can be very valuable
although, in both cases, there are reasons to treat
the data with caution.

When there is a local variation in
composition, the shift of the HOLZ lines has two
components: the shift due to the change in lattice
parameter and the shift due to the change in
dynamical diffraction effects resulting from the
composition change itself. Fortunately, for many
systems and for reasonable changes in
composition, the latter effect is small. [6] A naive
interpretation of the data as resulting solely from
the changes in lattice parameter will often give a
satisfactory result.

When the changes are due to stress, as
already noted, the problem is that the lattice
parameter that is measured will be changed by
the surface relaxation. (Lattice parameter
variation due to change of composition may be
unaffected by surface relaxation since there may
be no stresses to relax). The technique is
nonetheless valuable in this case provided that
the data are interpreted taking this into account.

Like all techniques, HOLZ line analysis
has its limitations and problems. Despite them it
remains a uniquely powerful method for the
measurement of lattice parameter on the
nanometer scale.

ADDITIONAL BIBLIOGRAPHY

The best review of convergent-beam
diffraction is still Steeds.[7] At a more
introductory level are two reviews by Eades. [8],
[9] For a more comprehensive and up-to-date
review, see two special issues of JEMT.[10]

The basic papers on HOLZ-line analysis
are Jones, Rackham and Steeds[11] and
Buxton.[12]

A good and comprehensive bibliography
of convergent-beam diffraction was published
recently.[13] It lists many papers on HOLZ line
methods and applications to problems in
materials science.
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