Abstract

This research is an exploratory study that deals with the preparation, characterization, and evaluation of the influence of temperature on belite cement additivated with nano-silica and nano-alumina, as alternative cementitious material, with lower environmental impact and potential application in the process of oil well cementing. The aim was to identify the crystalline phases presents in the samples and the effect of temperature on their composition. Four blends were prepared: pure belite cement (B), belite cement with nanoalumina (BNA), belite cement with nanosilica (BNS) and a hybrid belite cement system (BH). The pastes were cured for 28 days at room temperature and the hardened materials were calcined at 110 °C and 200 °C and then characterized by x-ray diffraction, infrared spectroscopy, x-ray fluorescence spectroscopy, thermogravimetric analysis and scanning electron microscopy. The most relevant results revealed by x-ray diffraction analysis that the system B, exposed to 110 °C and 200 °C, showed the presence of α-C2SH phase at 2θ = 17.25° and 29°. In contrast, the BNS and BNA systems did not show those peaks, which means that the absence of α-C2SH phase is promoted for nanoadditives.